GLOBAL CLIMATE CHANGE IMPACTS IN THE UNITED STATES -- A STAT

Hard to overstate the significance of this topic. Unfortunately, the material in here will become more and more depressing as time goes on. Not much hope of any alternative to that.

Re: GLOBAL CLIMATE CHANGE IMPACTS IN THE UNITED STATES -- A

Postby admin » Fri Dec 04, 2015 10:42 pm

Islands

Image

Climate change presents the Pacific and Caribbean islands with unique challenges. The U.S. affiliated Pacific Islands are home to approximately 1.7 million people in the Hawaiian Islands; Palau; the Samoan Islands of Tutuila, Manua, Rose, and Swains; and islands in the Micronesian archipelago, the Carolines, Marshalls, and Marianas.530 These include volcanic, continental, and limestone islands, atolls, and islands of mixed geologies.530 The degree to which climate change and variability will affect each of the roughly 30,000 islands in the Pacific depends upon a variety of factors, including the island’s geology, area, height above sea level, extent of reef formation, and the size of its freshwater aquifer.531

In addition to Puerto Rico and the U.S. Virgin Islands, there are 40 island nations in the Caribbean that are home to approximately 38 million people.532 Population growth, often concentrated in coastal areas, escalates the vulnerability of both Pacific and Caribbean island communities to the effects of climate change, as do weakened traditional support systems. Tourism and fisheries, both of which are climate-sensitive, play a large economic role in these communities.530

Small islands are considered among the most vulnerable to climate change because extreme events have major impacts on them. Changes in weather patterns and the frequency and intensity of extreme events, sea-level rise, coastal erosion, coral reef bleaching, ocean acidification, and contamination of freshwater resources by salt water are among the impacts small islands face.533

Image
Air Temperature Change, Observed and Projected, 1900 to 2100
relative to 1960-1979 average
Air temperatures have increased over the last 100 years in both the Pacific Island and Caribbean regions. Larger increases are projected in the future, with higher emissions scenarios91 producing considerably greater increases. The shaded areas show the likely ranges while the lines show the central projections from a set of climate models.


Image
Freshwater Lens
Many island communities depend on freshwater lenses, which are recharged by precipitation. The amount of water a freshwater lens contains is determined by the size of the island, the amount of rainfall, rates of water withdrawal, the permeability of the rock beneath the island, and salt mixing due to storm- or tide-induced pressure. Freshwater lenses can be as shallow as 4 to 8 inches or as deep as 65 feet.534


Islands have experienced rising temperatures and sea levels in recent decades. Projections for the rest of this century suggest:

• Increases in air and ocean surface temperatures in both the Pacific and Caribbean;90
• An overall decrease in rainfall in the Caribbean; and
• An increased frequency of heavy downpours and increased rainfall during summer months (rather than the normal rainy season in winter months) for the Pacific (although the range of projections regarding rainfall in the Pacific is still quite large).

The number of heavy rain events is very likely to increase.90 Hurricane (typhoon) wind speeds and rainfall rates are likely to increase with continued warming.68 Islands and other low-lying coastal areas will be at increased risk from coastal inundation due to sea-level rise and storm surge, with major implications for coastal communities, infrastructure, natural habitats, and resources.

The availability of freshwater is likely to be reduced, with significant implications for island communities, economies, and resources.

Most island communities in the Pacific and the Caribbean have limited sources of the freshwater needed to support unique ecosystems and biodiversity, public health, agriculture, and tourism. Conventional freshwater resources include rainwater collection, groundwater, and surface water.534 For drinking and bathing, smaller Pacific islands primarily rely on individual rainwater catchment systems, while groundwater from the freshwater lens is used for irrigation. The size of freshwater lenses in atolls is influenced by factors such as rates of recharge (through precipitation), rates of use, and extent of tidal inundation.531 Since rainfall triggers the formation of the freshwater lens, changes in precipitation, such as the significant decreases projected for the Caribbean, can significantly affect the availability of water. Because tropical storms replenish water supplies, potential changes in these storms are a great concern.

While it might initially be seen as a benefit, increased rainfall in the Pacific Islands during the summer months is likely to result in increased flooding, which would reduce drinking water quality and crop yields.534 In addition, many islands have weak distribution systems and old infrastructure, which result in significant water leakage, decreasing their ability to use freshwater efficiently. Water pollution (such as from agriculture or sewage), exacerbated by storms and floods, can contaminate the freshwater supply, affecting public health. Sea-level rise also affects island water supplies by causing salt water to contaminate the freshwater lens and by causing an increased frequency of flooding due to storm high tides.531 Finally, a rapidly rising population is straining the limited water resources, as would an increased incidence and/or intensity of storms534 or periods of prolonged drought.

Image
Caribbean Precipitation Change
1900 to 2100
Total annual precipitation has declined in the Caribbean and climate models project stronger declines in the future, particularly under higher emission scenarios.91 Such decreases threaten island communities that rely on rainfall for replenishing their freshwater supplies. The shaded areas show the likely ranges while the lines show the central projections from a set of climate models.


Island communities, infrastructure, and ecosystems are vulnerable to coastal inundation due to sea-level rise and coastal storms.

Sea-level rise will have enormous effects on many island nations. Flooding will become more frequent due to higher storm tides, and coastal land will be permanently lost as the sea inundates low-lying areas and the shorelines erode. Loss of land will reduce freshwater supplies531 and affect living things in coastal ecosystems. For example, the Northwestern Hawaiian Islands, which are low-lying and therefore at great risk from increasing sea level, have a high concentration of endangered and threatened species, some of which exist nowhere else.535 The loss of nesting and nursing habitat is expected to threaten the survival of already vulnerable species.535

In addition to gradual sea-level rise, extreme high water level events can result from a combination of coastal processes.271 For example, the harbor in Honolulu, Hawaii, experienced the highest daily average sea level ever recorded in September 2003. This resulted from the combination of long-term sea-level rise, normal seasonal heating (which causes the volume of water to expand and thus the level of the sea to rise), seasonal high tide, and an ocean circulation event which temporarily raised local sea level.536 The interval between such extreme events has decreased from more than 20 years to approximately 5 years as average sea level has risen.536

Hurricanes, typhoons, and other storm events, with their intense precipitation and storm surge, cause major impacts to Pacific and Caribbean island communities, including loss of life, damage to infrastructure and property, and contamination of freshwater supplies.537 As the climate continues to warm, the peak wind intensities and near-storm precipitation from future tropical cyclones are likely to increase,90 which, combined with sea-level rise, is expected to cause higher storm surge levels. If such events occur frequently, communities would face challenges in recovering between events, resulting in long-term deterioration of infrastructure, freshwater and agricultural resources, and other impacts.246

Image
Extreme Sea-Level Days: Honolulu, Hawaii
Sea-level rise will result in permanent land loss and reductions in freshwater supplies, as well as threaten coastal ecosystems. “Extreme” sea-level days (with a daily average of more than 6 inches above the long-term average90) can result from the combined effects of gradual sea-level rise due to warming and other phenomena, including seasonal heating and high tides.


Image
Adaptation: Securing Water Resources
In the islands, “water is gold.” Effective adaptation to climate-related changes in the availability of freshwater is thus a high priority. While island communities cannot completely counter the threats to water supplies posed by global warming, effective adaptation approaches can help reduce the damage.

When existing resources fall short, managers look to unconventional resources, such as desalinating seawater, importing water by ship, and using treated wastewater for non-drinking uses. Desalination costs are declining, though concerns remain about the impact on marine life, the disposal of concentrated brines that may contain chemical waste, and the large energy use (and associated carbon footprint) of the process.146 With limited natural resources, the key to successful water resource management in the islands will continue to be “conserve, recover, and reuse.”530

Pacific Island communities are also making use of the latest science. This effort started during the 1997 to 1998 El Niño, when managers began using seasonal forecasts to prepare for droughts by increasing public awareness and encouraging water conservation. In addition, resource managers can improve infrastructure, such as by fixing water distribution systems to minimize leakage and by increasing freshwater storage capacity.530


Image
A billboard on Pohnpei, in the Federated States of Micronesia, encourages water conservation in preparation for the 1997 to 1998 El Niño.

Image
Coastal houses and an airport in the U.S.- affiliated Federated States of Micronesia rely on mangroves’ protection from erosion and damage due to rising sea level, waves, storm surges, and wind.

Critical infrastructure, including homes, airports, and roads, tends to be located along the coast. Flooding related to sea-level rise and hurricanes and typhoons negatively affects port facilities and harbors, and causes closures of roads, airports, and bridges.538 Long-term infrastructure damage would affect social services such as disaster risk management, health care, education, management of freshwater resources, and economic activity in sectors such as tourism and agriculture.

Climate changes affecting coastal and marine ecosystems will have major implications for tourism and fisheries.

Marine and coastal ecosystems of the islands are particularly vulnerable to the impacts of climate change. Sea-level rise, increasing water temperatures, rising storm intensity, coastal inundation and flooding from extreme events, beach erosion, ocean acidification, increased incidences of coral disease, and increased invasions by non-native species are among the threats that endanger the ecosystems that provide safety, sustenance, economic viability, and cultural and traditional values to island communities.539

Tourism is a vital part of the economy for many islands. In 1999, the Caribbean had tourism-based gross earnings of $17 billion, providing 900,000 jobs and making the Caribbean one of the most tourism dependent regions in the world.532 In the South Pacific, tourism can contribute as much as 47 percent of gross domestic product.540 In Hawaii, tourism generated $12.4 billion for the state in 2006, with over 7 million visitors.541

Sea-level rise can erode beaches, and along with increasing water temperatures, can destroy or degrade natural resources such as mangroves and coral reef ecosystems that attract tourists.246 Extreme weather events can affect transportation systems and interrupt communications. The availability of freshwater is critical to sustaining tourism, but is subject to the climate-related impacts described on the previous page. Public health concerns about diseases would also negatively affect tourism.

Coral reefs sustain fisheries and tourism, have biodiversity value, scientific and educational value, and form natural protection against wave erosion.542 For Hawaii alone, net benefits of reefs to the economy are estimated at $360 million annually, and the overall asset value is conservatively estimated to be nearly $10 billion.542 In the Caribbean, coral reefs provide annual net benefits from fisheries, tourism, and shoreline protection services of between $3.1 billion and $4.6 billion. The loss of income by 2015 from degraded reefs is conservatively estimated at several hundred million dollars annually.532,543

Coral reef ecosystems are particularly susceptible to the impacts of climate change, as even small increases in water temperature can cause coral bleaching,544 damaging and killing corals. Ocean acidification due to a rising carbon dioxide concentration poses an additional threat (see Ecosystems sector and Coasts region). Coral reef ecosystems are also especially vulnerable to invasive species.545 These impacts, combined with changes in the occurrence and intensity of El Niño events, rising sea level, and increasing storm damage,246 will have major negative effects on coral reef ecosystems.

Fisheries feed local people and island economies. Almost all communities within the Pacific Islands derive over 25 percent of their animal protein from fish, with some deriving up to 69 percent.546 For island fisheries sustained by healthy coral reef and marine ecosystems, climate change impacts exacerbate stresses such as overfishing,246 affecting both fisheries and tourism that depend on abundant and diverse reef fish. The loss of live corals results in local extinctions and a reduced number of reef fish species.547

Nearly 70 percent of the world’s annual tuna harvest, approximately 3.2 million tons, comes from the Pacific Ocean.548 Climate change is projected to cause a decline in tuna stocks and an eastward shift in their location, affecting the catch of certain countries.246
admin
Site Admin
 
Posts: 36135
Joined: Thu Aug 01, 2013 5:21 am

Re: GLOBAL CLIMATE CHANGE IMPACTS IN THE UNITED STATES -- A

Postby admin » Fri Dec 04, 2015 10:45 pm

Coasts

Image

Approximately one-third of all Americans live in counties immediately bordering the nation’s ocean coasts.549,550 In addition to accommodating major cities, the coasts and the exclusive economic zone extending 200 miles offshore provide enjoyment, recreation, seafood, transportation of goods, and energy. Coastal and ocean activities contribute more than $1 trillion to the nation’s gross domestic product and the ecosystems hold rich biodiversity and provide invaluable services. 551 However, intense human uses have taken a toll on coastal environments and their resources. Many fish stocks have been severely diminished by over-fishing, large “dead zones” depleted of oxygen have developed as a result of pollution by excess nitrogen runoff, toxic blooms of algae are increasingly frequent, and coral reefs are badly damaged or becoming overgrown with algae. About half of the nation’s coastal wetlands have been lost – and most of this loss has occurred during the past 50 years.

Global climate change imposes additional stresses on coastal environments. Rising sea level is already eroding shorelines, drowning wetlands, and threatening the built environment.43,224 The destructive potential of Atlantic tropical storms and hurricanes has increased since 1970 in association with increasing Atlantic sea surface temperatures, and it is likely that hurricane rainfall and wind speeds will increase in response to global warming.112 Coastal water temperatures have risen by about 2°F in several regions, and the geographic distributions of marine species have shifted.37,68,347 Precipitation increases on land have increased river runoff, polluting coastal waters with more nitrogen and phosphorous, sediments, and other contaminants. Furthermore, increasing acidification resulting from the uptake of carbon dioxide by ocean waters threatens corals, shellfish, and other living things that form their shells and skeletons from calcium carbonate23 (see Ecosystems sector). All of these forces converge and interact at the coasts, making these areas particularly sensitive to the impacts of climate change.

Image
Multiple Stresses Confront Coastal Regions
Various forces of climate change at the coasts pose a complex array of management challenges and adaptation requirements. For example, relative sea level is expected to rise at least 2 feet in Chesapeake Bay (located between Maryland and Virginia) where the land is subsiding, threatening portions of cities, inhabited islands, most tidal wetlands, and other low-lying regions. Climate change also will affect the volume of the bay, its salinity distribution and circulation, as will changes in precipitation and freshwater runoff. These changes, in turn, will affect summertime oxygen depletion and efforts to reduce the agricultural nitrogen runoff that causes it. Meanwhile the warming of the bay’s waters will make survival there difficult for northern species such as eelgrass and soft clams, while allowing southern species and invaders riding in ships’ ballast water to move in and change the mix of species that are caught and must be managed. Additionally, more acidic waters resulting from rising carbon dioxide levels will make it difficult for oysters to build their shells and will complicate the recovery of this key species.553


Significant sea-level rise and storm surge will adversely affect coastal cities and ecosystems around the nation; low-lying and subsiding areas are most vulnerable.

The rise in sea level relative to the land surface in any given location is a function of both the amount of global average sea-level rise and the degree to which the land is rising or falling. During the past century in the United States, relative sea level changes ranged from falling several inches to rising as much as 2 feet.225 High rates of relative sea-level rise, coupled with cutting off the supply of sediments from the Mississippi River and other human alterations, have resulted in the loss of 1,900 square miles of Louisiana’s coastal wetlands during the past century, weakening their capacity to absorb the storm surge of hurricanes such as Katrina.552 Shoreline retreat is occurring along most of the nation’s exposed shores.

The amount of sea-level rise likely to be experienced during this century depends mainly on the expansion of the ocean volume due to warming and the response of glaciers and polar ice sheets. Complex processes control the discharges from polar ice sheets and some are already producing substantial additions of water to the ocean.554 Because these processes are not well understood, it is difficult to predict their future contributions to sea-level rise.90,555

As discussed in the Global Climate Change section, recent estimates of global sea-level rise substantially exceed the IPCC estimates, suggesting sea-level rise between 3 and 4 feet in this century. Even a 2-foot rise in relative sea level over a century would result in the loss of a large portion of the nation’s remaining coastal wetlands, as they are not able to build new soil at a fast enough rate.164 Accelerated sea-level rise would affect sea-grasses, coral reefs, and other important habitats. It would also fragment barrier islands, and place into jeopardy existing homes, businesses, and infrastructure, including roads, ports, and water and sewage systems. Portions of major cities, including Boston and New York, would be subject to inundation by ocean water during storm surges or even during regular high tides.234

Image
Projected Sea-Level Rise by 2100
Estimates of sea-level rise by the end of the century for three emissions scenarios.91 Intergovernmental Panel on Climate Change 2007 projections (range shown as bars) exclude changes in ice sheet flow.90 Light blue circles represent more recent, central estimates derived using the observed relationship of sea-level rise to temperature.103 Areas where coastal land is sinking, for example by as much as 1.5 feet in this century along portions of the Gulf Coast, would experience that much additional sea-level rise relative to the land.128


Image
A “ghost swamp” in south Louisiana shows the effects of saltwater intrusion.

Image
Dead Zones in the Chesapeake Bay
Climate change is likely to expand and intensify “dead zones,” areas where bottom water is depleted of dissolved oxygen because of nitrogen pollution, threatening living things.


More spring runoff and warmer coastal waters will increase the seasonal reduction in oxygen resulting from excess nitrogen from agriculture.

Coastal dead zones in places such as the northern Gulf of Mexico556 and the Chesapeake Bay557 are likely to increase in size and intensity as warming increases unless efforts to control runoff of agricultural fertilizers are redoubled. Greater spring runoff into East Coast estuaries and the Gulf of Mexico would flush more nitrogen into coastal waters stimulating harmful blooms of algae and the excess production of microscopic plants that settle near the seafloor and deplete oxygen supplies as they decompose. In addition, all else being equal, greater runoff reduces salinity, which when coupled with warmer surface water increases the difference in density between surface and bottom waters, thus preventing the replacement of oxygen in the deeper waters. As dissolved oxygen levels decline below a certain level, living things cannot survive. They leave the area if they can, and die if they cannot.

Coastal waters are very likely to continue to warm by as much 4 to 8°F in this century, both in summer and winter.234 This will result in a northward shift in the geographic distribution of marine life along the coasts; this is already being observed.70,347 The shift occurs because some species cannot tolerate the higher temperatures and others are out-competed by species from farther south moving in.270 Warming also opens the door to invasion by species that humans are intentionally or unintentionally transporting around the world, for example in the ballast water carried by ships. Species that were previously unable to establish populations because of cold winters are likely to find the warmer conditions more welcoming and gain a foothold,567 particularly as native species are under stress from climate change and other human activities. Non-native clams and small crustaceans have already had major effects on the San Francisco Bay ecosystem and the health of its fishery resources.559

Image
Calcium Carbonate Saturation in Ocean Surface Waters
Corals require the right combination of temperature, light, and the presence of calcium carbonate (which they use to build their skeletons). As atmospheric carbon dioxide levels rise, some of the excess carbon dioxide dissolves into ocean water, reducing its calcium carbonate saturation. As the maps indicate, calcium carbonate saturation has already been reduced considerably from its pre-industrial level, and model projections suggest much greater reductions in the future. The blue dots indicate current coral reefs. Note that under projections for the future, it is very unlikely that calcium carbonate saturation levels will be adequate to support coral reefs in any U.S. waters.219


Higher water temperatures and ocean acidification due to increasing atmospheric carbon dioxide will present major additional stresses to coral reefs, resulting in significant dieoffs and limited recovery.

In addition to carbon dioxide’s heat-trapping effect, the increase in its concentration in the atmosphere is gradually acidifying the ocean. About one-third of the carbon dioxide emitted by human activities has been absorbed by the ocean, resulting in a decrease in the ocean’s pH. Since the beginning of the industrial era, ocean pH has declined demonstrably and is projected to decline much more by 2100 if current emissions trends continue. Further declines in pH are very likely to continue to affect the ability of living things to create and maintain shells or skeletons of calcium carbonate. This is because at a lower pH less of the dissolved carbon is available as carbonate ions (see Global Climate Change).70,259

Ocean acidification will affect living things including important plankton species in the open ocean, mollusks and other shellfish, and corals.22,23,70,259 The effects on reef-building corals are likely to be particularly severe during this century. Coral calcification rates are likely to decline by more than 30 percent under a doubling of atmospheric carbon dioxide concentrations, with erosion outpacing reef formation at even lower concentrations.22 In addition, the reduction in pH also affects photosynthesis, growth, and reproduction. The upwelling of deeper ocean water, deficient in carbonate, and thus potentially detrimental to the food chains supporting juvenile salmon has recently been observed along the U.S. West Coast.259

Acidification imposes yet another stress on reef-building corals, which are also subject to bleaching – the expulsion of the microscopic algae that live inside the corals and are essential to their survival – as a result of heat stress70 (see Ecosystems sector and Islands region). As a result of these and other stresses, the corals that form the reefs in the Florida Keys, Puerto Rico, Hawaii, and the Pacific Islands are projected to be lost if carbon dioxide concentrations continue to rise at their current rate.560

Changing ocean currents will affect coastal ecosystems.

Because it affects the distribution of heat in the atmosphere and the oceans, climate change will affect winds and currents that move along the nation’s coasts, such as the California Current that bathes the West Coast from British Columbia to Baja California. 70 In this area, wind-driven upwelling of deeper ocean water along the coast is vital to moderation of temperatures and the high productivity of Pacific Coast ecosystems. Coastal currents are subject to periodic variations caused by the El Niño-Southern Oscillation and the Pacific Decadal Oscillation, which have substantial effects on the success of salmon and other fishery resources. Climate change is expected to affect such coastal currents, and possibly the larger scale natural oscillations as well, though these effects are not yet well understood. The recent emergence of oxygen-depletion events on the continental shelf off Oregon and Washington (a dead zone not directly caused by agricultural runoff and waste discharges such as those in the Gulf of Mexico or Chesapeake Bay) is one example.561

Image
Pacific Coast “Dead Zone”
2006 to 2007
Climate change affects coastal currents that moderate ocean temperatures and the productivity of ecosystems. As such, it is believed to be a factor in the low-oxygen “dead zone” that has appeared along the coast of Washington and Oregon in recent years.561 In the maps above, blue indicates low-oxygen areas and purple shows areas that are the most severely oxygen depleted.


Image
Adaptation: Coping with Sea-Level Rise
Adaptation to sea-level rise is already taking place in three main categories: (1) protecting the coastline by building hard structures such as levees and seawalls (although hard structures can, in some cases, actually increase risks and worsen beach erosion and wetland retreat), (2) accommodating rising water by elevating or redesigning structures, enhancing wetlands, or adding sand from elsewhere to beaches (the latter is not a permanent solution, and can encourage development in vulnerable locations), and (3) planned retreat from the coastline as sea level rises.269

Several states have laws or regulations that require setbacks for construction based on the planned life of the development and observed erosion rates.371 North Carolina, Rhode Island, and South Carolina are using such a moving baseline to guide planning. Maine’s Coastal Sand Dune Rules prohibit buildings of a certain size that are unlikely to remain stable with a sea-level rise of 2 feet. The Massachusetts Coastal Hazards Commission is preparing a 20-year infrastructure and protection plan to improve hazards management and the Maryland Commission on Climate Change has recently made comprehensive recommendations to reduce the state’s vulnerability to sea-level rise and coastal storms by addressing building codes, public infrastructure, zoning, and emergency preparedness. Governments and private interests are beginning to take sea-level rise into account in planning levees and bridges, and in the siting and design of facilities such as sewage treatment plants (see Adaptation box in Northeast region).
admin
Site Admin
 
Posts: 36135
Joined: Thu Aug 01, 2013 5:21 am

Re: GLOBAL CLIMATE CHANGE IMPACTS IN THE UNITED STATES -- A

Postby admin » Fri Dec 04, 2015 10:49 pm

An Agenda for Climate Impacts Science

Image

Both mitigation and adaptation decisions are becoming increasingly necessary. Advancing our knowledge in the many aspects of science that affect the climate system has already contributed greatly to decision making on climate change issues. Further advances in climate science including better understanding and projections regarding rainfall, storm tracks, storm intensity, heat waves, and sea-level rise will improve decision making capabilities.

The focus below, however, is on advancing our knowledge specifically on climate change impacts and those aspects of climate change responsible for these impacts in order to continue to guide decision making.

Recommendation 1: Expand our understanding of climate change impacts.

There is a clear need to increase understanding of how ecosystems, social and economic systems, human health, and infrastructure will be affected by climate change in the context of other stresses. New understanding will come from a mix of activities including sustained and systematic observations, field and laboratory experiments, model development, and integrated impact assessments. These will incorporate shared learning among researchers, practitioners (such as engineers and water managers), and local stakeholders.

Ecosystems

Ecosystem changes, in response to changes in climate and other environmental conditions, have already been documented. These include changes in the chemistry of the atmosphere and precipitation, vegetation patterns, growing season length, plant productivity, animal species distributions, and the frequency and severity of pest outbreaks and fires. In the marine environment, changes include the health of corals and other living things due to temperature stress and ocean acidification. These observations not only document climate-change impacts, but also provide critical input to understanding how and why these changes occur, and how changes in ecosystems in turn affect climate. In this way, records of observed changes can improve projections of future impacts related to various climate change scenarios.

In addition to observations, large-scale, whole-ecosystem experiments are essential for improving projections of impacts. Ecosystem-level experiments that vary multiple factors, such as temperature, moisture, ground-level ozone, and atmospheric carbon dioxide, would provide process-level understanding of the ways ecosystems could respond to climate change in the context of other environmental stresses. Such experiments are particularly important for ecosystems with the greatest potential to experience massive change due to the crossing of thresholds or tipping points.

Insights regarding ecosystem responses to climate change gained from both observations and experiments are the essential building blocks of ecosystem simulation models. These models, when rigorously developed and tested, provide powerful tools for exploring the ecosystem consequences of alternative future climates. The incorporation of ecosystem models into an integrated assessment framework that includes socioeconomic, atmospheric and ocean chemistry, and atmosphere-ocean general circulation models should be a major goal of impacts research. This knowledge can provide a base for research studies into ways to manage critical ecosystems in an environment that is continually changing.

Economic systems, human health, and the built environment

As natural systems experience variations due to a changing climate, social and economic systems will be affected. Food production, water resources, forests, parks, and other managed systems provide life support for society. Their sustainability will depend on how well they can adapt to a future climate that is different from historical experience.

At the same time, climate change is exposing human health and the built environment to increasing risks. Among the likely impacts are an expansion of the ranges of insects and other animals that carry diseases and a greater incidence of health-threatening air pollution events compounded by unusually hot weather associated with climate change. In coastal areas, sea-level rise and storm surge threaten infrastructure including homes, roads, ports, and oil and gas drilling and distribution facilities. In other parts of the country, floods, droughts, and other weather and climate extremes pose increasing threats.

Careful observations along with climate and Earth system models run with a range of emissions scenarios can help society evaluate these risks and plan actions to minimize them. Work in this area would include assessments of the performance of delivery systems, such as those for regional water and electricity supply, so that climate change impacts and costs can be evaluated in terms of changes in risk to system performance. It will be particularly important to understand when the effects on these systems are extremely large and/or rapid, similar to tipping points and thresholds in ecosystems.

In addition, the climate change experienced outside the United States will have implications for our nation. A better understanding of these international linkages, including those related to trade, security, and large-scale movements of people in response to climate change, is desirable.

Recommendation 2: Refine ability to project climate change, including extreme events, at local scales.

One of the main messages to emerge from the past decade of synthesis and assessments is that while climate change is a global issue, it has a great deal of regional variability. There is an indisputable need to improve understanding of climate system effects at these smaller scales, because these are often the scales of decision making in society. Understanding impacts at local scales will also help to target finite resources for adaptation measures. Although much progress has been made in understanding important aspects of this variability, uncertainties remain. Further work is needed on how to quantify cumulative uncertainties across spatial scales and the uncertainties associated with complex, intertwined natural and social systems.

Because region-specific climate changes will occur in the context of other environmental and social changes that are also region-specific, it is important to continue to refine our understanding of regional details, especially those related to precipitation and soil moisture. This would be aided by further testing of models against observations using established metrics designed to evaluate and improve the realism of regional model simulations.

Continued development of improved, higher resolution global climate models, increased computational capacity, extensive climate model experiments, and improved downscaling methods will increase the value of geographically specific climate projections for decision makers in government, business, and the general population.

Extreme weather and climate events are a key component of regional climate. Additional attention needs to be focused on improved observations (made on the relevant time and space scales to capture high-impact extreme events) and associated research and analysis of the potential for future changes in extremes. Impacts analyses indicate that extreme weather and climate events often play a major role in determining climate-change consequences.

Recommendation 3: Expand capacity to provide decision makers and the public with relevant information on climate change and its impacts.

The United States has tremendous potential to create more comprehensive measurement, archive, and data-access systems and to convey needed information that could provide great benefit to society. There are several aspects to fulfilling this goal: defining what is most relevant, gathering the needed information, expanding the capacity to deliver information, and improving the tools for decision makers to use this information to the best advantage. All of these aspects should involve an interactive and iterative process of continual learning between those who provide information and those who use it. Through such a process, monitoring systems, distribution networks, and tools for using information can all be refined to meet user needs.

For example, tools used by researchers that could also be useful to decision makers include those that analyze and display the probability of occurrence of a range of outcomes to help in assessing risks.

Improved climate monitoring can be efficiently achieved by following the Climate Monitoring Principles recommended by the National Academy of Sciences and the Climate Change Science Strategic Plan in addition to integrating current efforts of governments at all levels. Such a strategy complements a long-term commitment to the measurement of the set of essential climate variables identified by both the Climate Change Science Program and the Global Climate Observing System. Attention must be placed on the variety of time and space scales critical for decision making.

Improved impacts monitoring would include information on the physical and economic effects of extreme events (such as floods and droughts), available, for example, from emergency preparedness and resource management authorities. It would also include regular archiving of information about impacts.

Improved access to data and information archives could substantially enhance society’s ability to respond to climate change. While many data related to climate impacts are already freely and readily available to a broad range of users, other data, such as damage costs, are not, and efforts should be made to make them available. Easily accessible information should include a set of agreed-upon baseline indicators and measures of environmental conditions that can be used to track the effects of changes in climate. Services that provide reliable, well-documented, and easily used climate information, and make this information available to support users, are important.

Recommendation 4: Improve understanding of thresholds likely to lead to abrupt changes in climate or ecosystems.

Paleoclimatic data show that climate can and has changed quite abruptly when certain thresholds are crossed. Similarly, there is evidence that ecological and human systems can undergo abrupt change when tipping points are reached.

Within the climate system there are a number of key risks to society for which understanding is still quite limited. Additional research is needed in some key areas, for example, identifying thresholds that lead to rapid changes in ice sheet dynamics. Sea-level rise is a major concern and improved understanding of the sensitivity of the major ice sheets to sustained warming requires improved observing capability, analysis, and modeling of the ice sheets and their interactions with nearby oceans. Estimates of sea-level rise in previous assessments, such as the recent Intergovernmental Panel on Climate Change 2007 report, did not fully quantify the magnitude and rate of future sea-level rise due to inadequate scientific understanding of potential instabilities of the Greenland and Antarctic ice sheets.

Tipping points in biological systems include the temperature thresholds above which insects survive winter, and can complete two life cycles instead of one in a single growing season, contributing to infestations that kill large numbers of trees. The devastation caused by bark beetles in Canada, and increasingly in the U.S. West, provides an example of how crossing such a threshold can set off massive destruction in an ecosystem with far-reaching consequences.

Similarly, there is increasing concern about the acidification of the world’s oceans due to rising atmospheric carbon dioxide levels. There are ocean acidity thresholds beyond which corals and other living things, including some that form the base of important marine food chains, will no longer be able to form the shells and other body structures they need to survive. Improving understanding of such thresholds is an important goal for future research.

Recommendation 5: Improve understanding of the most effective ways to reduce the rate and magnitude of climate change, as well as unintended consequences of such activities.

This report underscores the importance of reducing the concentrations of heat-trapping gases in the atmosphere. Impacts of climate change during this century and beyond are projected to be far larger and more rapid in scenarios in which greenhouse gas concentrations continue to grow rapidly compared to scenarios in which concentrations grow more slowly. Additional research will help identify the desired mix of mitigation options necessary to control the rate and magnitude of climate change.

In addition to their intended reduction of atmospheric concentrations of greenhouse gases, mitigation options also have the potential for unintended consequences, which should also be examined in future research. For example, the production, transportation, and use of biofuels could lead to increases in water and fertilizer use as well as in some air pollutants. It could also create competition among land uses for food production, biofuels production, and natural ecosystems that provide many benefits to society. Improved understanding of such unintended consequences, and identification of those options that carry the largest negative impacts, can help decision makers make more informed choices regarding the possible trade-offs inherent in various mitigation strategies.

Recommendation 6: Enhance understanding of how society can adapt to climate change.

There is currently limited knowledge about the ability of communities, regions, and sectors to adapt to future climate change. It is important to improve understanding of how to enhance society’s capacity to adapt to a changing climate in the context of other environmental stresses. Interdisciplinary research on adaptation that takes into account the interconnectedness of the Earth system and the complex nature of the social, political, and economic environment in which adaptation decisions must be made would be central to this effort.

The potential exists to provide insights into the possible effectiveness and limits of adaptation options that might be considered in the future. To realize this potential, new research would be helpful to document past responses to climate variability and other environmental changes, analyze the underlying reasons for them, and explain how individual and institutional decisions were made. However, human-induced climate change is projected to be larger and more rapid than any experienced by modern society so there are limits to what can be learned from the past.

A major difficulty in the analysis of adaptation strategies in this report has been the lack of information about the potential costs of adaptation measures, their effectiveness under various scenarios of climate change, the time horizons required for their implementation, and unintended consequences. These types of information should be systematically gathered and shared with decision makers as they consider a range of adaptation options. It is also clear that there is a substantial gap between the available information about climate change and the development of new guidelines for infrastructure such as housing, transportation, water systems, commercial buildings, and energy systems. There are also social and institutional obstacles to appropriate action, even in the face of adequate knowledge. These obstacles need to be better understood so that they can be reduced or eliminated.

Finally, it is important to carry out regular assessments of adaptation measures that address combined scenarios of future climate change, population growth, and economic development paths. This is an important opportunity for shared learning in which researchers, practitioners, and stakeholders collaborate using observations, models, and dialogue to explore adaptation as part of long-term, sustainable development planning.
admin
Site Admin
 
Posts: 36135
Joined: Thu Aug 01, 2013 5:21 am

Re: GLOBAL CLIMATE CHANGE IMPACTS IN THE UNITED STATES -- A

Postby admin » Fri Dec 04, 2015 10:52 pm

Concluding Thoughts

Image

Responding to changing conditions

Human-induced climate change is happening now, and impacts are already apparent. Greater impacts are projected, particularly if heat-trapping gas emissions continue unabated. Previous assessments have established these facts, and this report confirms, solidifies, and extends these conclusions for the United States. It reports the latest understanding of how climate change is already affecting important sectors and regions. In particular, it reports that some climate change impacts appear to be increasing faster than previous assessments had suggested. This report represents a significant update to previous work, as it draws from the U.S. Climate Change Science Program’s Synthesis and Assessment Products and other recent studies that examine how climate change and its effects are projected to continue to increase over this century and beyond.

Climate choices

Choices about emissions now and in the coming years will have far-reaching consequences for climate change impacts. A consistent finding of this assessment is that the rate and magnitude of future climate change and resulting impacts depend critically on the level of global atmospheric heat-trapping gas concentrations as well as the types and concentrations of atmospheric particles (aerosols). Lower emissions of heat-trapping gases will delay the appearance of climate change impacts and lessen their magnitude. Unless the rate of emissions is substantially reduced, impacts are expected to become increasingly severe for more people and places.

Similarly, there are choices to be made about adaptation strategies that can help to reduce or avoid some of the undesirable impacts of climate change. There is much to learn about the effectiveness of the various types of adaptation responses and how they will interact with each other and with mitigation actions.

Responses to the climate change challenge will almost certainly evolve over time as society learns by doing. Determining and refining societal responses will be an iterative process involving scientists, policymakers, and public and private decision makers at all levels. Implementing these response strategies will require careful planning and continual feedback on the impacts of mitigation and adaptation policies for government, industry, and society.

The value of assessments

Science has revolutionized our ability to observe and model the Earth’s climate and living systems, to understand how they are changing, and to project future changes in ways that were not possible in prior generations. These advances have enabled the assessment of climate change, impacts, vulnerabilities, and response strategies. Assessments serve a very important function in providing the scientific underpinnings of informed policy. They can identify advances in the underlying science, provide critical analysis of issues, and highlight key findings and key unknowns that can guide decision making. Regular assessments also serve as progress reports to evaluate and improve policy making and other types of decision making related to climate change.

Impacts and adaptation research includes complex human dimensions, such as economics, management, governance, behavior, and equity. Comprehensive assessments provide an opportunity to evaluate the social implications of climate change within the context of larger questions of how communities and the nation as a whole create sustainable and environmentally sound development paths.

A vision for future U.S. assessments

Over the past decade, U.S. federal agencies have undertaken two coordinated, national-scale efforts to evaluate the impacts of global climate change on this country. Each effort produced a report to the nation – Climate Change Impacts on the United States, published in 2000, and this report, Global Climate Change Impacts in the United States, published in 2009. A unique feature of the first report was that in addition to reporting the current state of the science, it created a national discourse on climate change that involved hundreds of scientists and thousands of stakeholders including farmers, ranchers, resource managers, city planners, business people, and local and regional government officials. A notable feature of the second report is the incorporation of information from the 21 topic-specific Synthesis and Assessment Products, many motivated by stakeholder interactions.

A vision for future climate change assessments includes both sustained, extensive stakeholder involvement, and targeted, scientifically rigorous reports that address concerns in a timely fashion. The value of stakeholder involvement includes helping scientists understand what information society wants and needs. In addition, the problem-solving abilities of stakeholders will be essential to designing, initiating, and evaluating mitigation and adaptation strategies and their interactions. The best decisions about these strategies will come when there is widespread understanding of the complex issue of climate change – the science and its many implications for our nation.

Image
admin
Site Admin
 
Posts: 36135
Joined: Thu Aug 01, 2013 5:21 am

Re: GLOBAL CLIMATE CHANGE IMPACTS IN THE UNITED STATES -- A

Postby admin » Fri Dec 04, 2015 10:52 pm

AUTHOR TEAM

Federal Advisory Committee Authors


David M. Anderson is the Director for the World Data Center for Paleo-climatology, Chief of the Paleo-climatology Branch of NOAA’s National Climatic Data Center, and an Associate Professor at the University of Colorado.

Donald F. Boesch is President of the University of Maryland Center for Environmental Science. His area of expertise is biological oceanography.

Virginia R. Burkett is the Chief Scientist for Global Change Research at the U.S. Geological Survey. Her areas of expertise are coastal ecology, wetland management, and forestry.

Lynne M. Carter is the Director of the Adaptation Network, a non-profit organization, and a project of the Earth Island Institute. Through assessment and action, she works to build resilience in communities and ecosystems in the face of a changing climate.

Stewart J. Cohen is senior researcher with the Adaptation and Impacts Research Division of Environment Canada, and an Adjunct Professor with the Department of Forest Resources Management of the University of British Columbia.

Nancy B. Grimm is a Professor of Life Sciences at Arizona State University. She studies how human-environment interactions and climate variability influence biogeochemical processes in both riverine and urban ecosystems.

Jerry L. Hatfield is the Laboratory Director of the USDA-ARS National Soil Tilth Laboratory in Ames, Iowa. His expertise is in the quantifications of spatial and temporal interactions across the soil-plant-atmosphere continuum.

Katharine Hayhoe is a Research Associate Professor in the Department of Geosciences at Texas Tech University and Principal Scientist and CEO of ATMOS Research & Consulting. Her research examines the potential impacts of human activities on the global environment.

Anthony C. Janetos is the Director of the Joint Global Change Research Institute, a joint venture between the Pacific Northwest National Laboratory and the University of Maryland. His area of expertise is biology.

Thomas R. Karl, (Co-Chair), is the Director of NOAA’s National Climatic Data Center. His areas of expertise include monitoring for climate change and changes in extreme climate and weather events. He is also president of the American Meteorological Society.

Jack A. Kaye currently serves as Associate Director for Research of the Earth Science Division within NASA’s Science Mission Directorate. He is responsible for NASA’s research and data analysis programs in Earth System Science.

Jay H. Lawrimore is Chief of the Climate Analysis Branch at NOAA’s National Climatic Data Center. He has led a team of scientists that monitors the Earth’s climate on an operational basis.

James J. McCarthy is Alexander Agassiz Professor of Biological Oceanography at Harvard University. His areas of expertise are biology and oceanography. He is also President of the American Association for the Advancement of Science.

A. David McGuire is a Professor of Ecology in the U.S. Geological Survey’s Alaska Cooperative Fish and Wildlife Research Unit located at the University of Alaska Fairbanks. His areas of expertise are ecosystem ecology and terrestrial feedbacks to the climate system.

Jerry M. Melillo, (Co-Chair), is the Director of The Ecosystems Center at the Marine Biological Laboratory in Woods Hole. He specializes in understanding the impacts of human activities on the biogeochemistry of ecological systems.

Edward L. Miles is the Virginia and Prentice Bloedel Professor of Marine Studies and Public Affairs at the University of Washington. His fields of specialization are international science and technology policy, marine policy and ocean management, and the impacts of climate variability and change.

Evan Mills is currently a Staff Scientist at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory. His areas of expertise are energy systems and risk management in the context of climate change.

Jonathan T. Overpeck is a climate system scientist at the University of Arizona, where he is also the Director of the Institute of the Environment, as well as a Professor of Geosciences and a Professor of Atmospheric Sciences.

Jonathan A. Patz is a Professor & Director of Global Environmental Health at the University of Wisconsin in Madison. He has earned medical board certification in both Occupational/Environmental Medicine and Family Medicine.

Thomas C. Peterson, (Co-Chair), is a physical scientist at NOAA’s National Climatic Data Center in Asheville, North Carolina. His areas of expertise include data fidelity, international data exchange and global climate analysis using both in situ and satellite data.

Roger S. Pulwarty is a physical scientist and the Director of the National Integrated Drought Information System Program at NOAA in Boulder, Colorado. His interests are in climate risk assessment and adaptation.

Benjamin D. Santer is an atmospheric scientist at Lawrence Livermore National Laboratory. His research focuses on climate model evaluation, the use of statistical methods in climate science, and identification of “fingerprints” in observed climate records.

Michael J. Savonis has 25 years of experience in transportation policy, with extensive expertise in air quality and emerging environmental issues. He currently serves as a Senior Policy Advisor at the Federal Highway Administration.

H. Gerry Schwartz, Jr. is an internationally known expert in environmental and civil engineering. He is past-president of both the Water Environment Federation and the American Society of Civil Engineers, a member of the National Academy of Engineering, and a private consultant.

Eileen L. Shea serves as Director of the NOAA Integrated Data and Environmental Applications Center and Chief of the Climate Monitoring and Services Division, National Climatic Data Center, NOAA/NESDIS. Her educational experience focused on marine science, environmental law, and resource management.

John M.R. Stone is an Adjunct Research Professor in the Department of Geography and Environmental Studies at Carleton University. He has spent the last 20 years managing climate research in Canada and helping to influence the dialogue between science and policy.

Bradley H. Udall is the Director of the University of Colorado Western Water Assessment. He was formerly a consulting engineer at Hydrosphere Resource Consultants. His expertise includes water and policy issues of the American West and especially the Colorado River. He is an affiliate of NOAA’s Earth System Research Laboratory.

John E. Walsh is a President’s Professor of Global Change at the University of Alaska, Fairbanks and Professor Emeritus of Atmospheric Sciences at the University of Illinois. His research interests include the climate of the Arctic, extreme weather events as they relate to climate, and climate-cryosphere interactions.

Michael F. Wehner is a member of the Scientific Computing Group at the Lawrence Berkeley National Laboratory in Berkeley, California. He has been active in both the design of global climate models and in the analysis of their output.

Thomas J. Wilbanks is a Corporate Research Fellow at the Oak Ridge National Laboratory and leads the Laboratory’s Global Change and Developing Country Programs. He conducts research on such issues as sustainable development and responses to concerns about climate change.

Donald J. Wuebbles is the Harry E. Preble Professor of Atmospheric Sciences at the University of Illinois. His research emphasizes the study of chemical and physical processes of the atmosphere towards improved understanding of the Earth’s climate and atmospheric composition.
admin
Site Admin
 
Posts: 36135
Joined: Thu Aug 01, 2013 5:21 am

Re: GLOBAL CLIMATE CHANGE IMPACTS IN THE UNITED STATES -- A

Postby admin » Fri Dec 04, 2015 10:53 pm

Primary Sources of Information

CCSP Goal 1: Improve knowledge of the Earth’s past and present climate and environment, including its natural variability, and improve understanding of the causes of observed variability and change.


Temperature Trends in the Lower Atmosphere:
Steps for Understanding and Reconciling Differences
Thomas R. Karl, NOAA; Susan J. Hassol, STG Inc.; Christopher D. Miller, NOAA; William L. Murray, STG Inc.

Past Climate Variability and Change in the Arctic and at High Latitudes
Richard B. Alley, Pennsylvania State Univ.; Julie Brigham-Grette, Univ. of Massachusetts; Gifford H. Miller, Univ. of Colorado; Leonid Polyak, Ohio State Univ.; James W.C. White, Univ.of Colorado; Joan J. Fitzpatrick, USGS

Re-Analysis of Historical Climate Data for Key Atmospheric Features:
Implications for Attribution of Causes of Observed Change
Randall M. Dole, Martin P. Hoerling, Siegfried Schubert, NOAA

CCSP Goal 2: Improve quantification of the forces bringing about changes in the Earth’s climate and related systems.

Part A: Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations
Part B: Global-Change Scenarios: Their Development and Use
Leon E. Clarke, James A. Edmonds, Hugh M. Pitcher, Pacific Northwest National Lab.; Henry D. Jacoby, MIT; John M. Reilly, MIT; Richard G. Richels, Electric Power Research Institute; Edward A. Parson, Univ. of Michigan; Virginia R. Burkett, USGS; Karen Fisher- Vanden, Dartmouth College; David W. Keith, Univ. of Calgary; Linda O. Mearns, NCAR; Cynthia E. Rosenzweig, NASA; Mort D. Webster, MIT; John C. Houghton DOE/Office of Biological and Environmental Research

The First State of the Carbon Cycle Report (SOCCR)
North American Carbon Budget and Implications for the Global Carbon Cycle
Anthony W. King, ORNL; Lisa Dilling, Univ. of Colorado/NCAR; Gregory P. Zimmerman,ORNL; David Fairman, Consensus Building Institute Inc.; Richard A. Houghton, Woods Hole Research Center; Gregg Marland, ORNL; Adam Z. Rose, Pennsylvania State Univ. and Univ. Southern California; Thomas J. Wilbanks, ORNL

Atmospheric Aerosol Properties and Climate Impacts
Mian Chin, NASA; Ralph A. Kahn, NASA; Stephen E. Schwartz, DOE/BNL; Lorraine A. Remer, NASA/ GSFC; Hogbin Yu, NASA/GSFC/UMBC; David Rind, NASA/GISS; Graham Feingold, NOAA/ESRL; Patricia K. Quinn, NOAA/PMEL; David G. Streets, DOE/ANL; Philip DeCola, NASA HQ; Rangasayi Halthore, NASA HQ/NRL

Trends in Emissions of Ozone-Depleting Substances, Ozone Layer Recovery, & Implications for Ultraviolet
Radiation Exposure
A.R. Ravishankara, NOAA; Michael J. Kurylo, NASA; Christine Ennis, NOAA/ESRL

CCSP Goal 3: Reduce uncertainty in projections of how the Earth’s climate and related systems may change in the future.

Climate Models: An Assessment of Strengths and Limitations
David C. Bader and Curt Covey, Lawrence Livermore National Lab.; William J. Gutowski Jr., Iowa State Univ.; Isaac M. Held, NOAA/GFDL; Kenneth E. Kunkel, Illinois State Water Survey; Ronald L. Miller, NASA/ GISS; Robin T. Tokmakian, Naval Postgraduate School; Minghua H. Zhang, State Univ. of New York Stony Brook; Anjuli S. Bamzai, U.S. DOE

Climate Projections Based on Emissions Scenarios for Long-Lived and Short-Lived Radiatively Active
Gases and Aerosols
Hiram Levy II, NOAA/GFDL; Drew Shindell, NASA/GISS; Alice Gilliland, NOAA /ARL; M. Daniel Schwarzkopf, NOAA/GFDL; Larry W. Horowitz, NOAA/GFDL; Anne M. Waple, STG Inc.

Weather and Climate Extremes in a Changing Climate:
Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands
Thomas R. Karl, NOAA; Gerald A. Meehl, NCAR; Christopher D. Miller, NOAA; Susan J. Hassol, STG Inc.; Anne M. Waple, STG Inc.; William L. Murray, STG Inc.

Abrupt Climate Change
John P. McGeehin, USGS; John A. Barron, USGS; David M. Anderson, NOAA; David J. Verardo, NSF; Peter U. Clark, Oregon State Univ.; Andrew J. Weaver, Univ. of Victoria; Konrad Steffen, Univ. of Colorado; Edward R. Cook, Columbia Univ.; Thomas L. Delworth, NOAA; Edward Brook, Oregon State Univ.

CCSP Goal 4: Understand the sensitivity and adaptability of different natural and managed ecosystems and human systems to climate and related global changes.

Coastal Sensitivity to Sea-Level Rise:
A Focus on the Mid-Atlantic Region
James G. Titus, U.S. EPA; K. Eric Anderson, USGS; Donald R. Cahoon, USGS; Dean B. Gesch, USGS; Stephen K. Gill, NOAA; Benjamin T. Gutierrez, USGS; E. Robert Thieler, USGS; S. Jeffress Williams, USGS

Thresholds of Climate Change in Ecosystems
Daniel B. Fagre, USGS; Colleen W. Charles, USGS

The Effects of Climate Change on Agriculture, Land Resources, Water Resources and Biodiversity
in the United States
Peter Backlund, NCAR; Anthony Janetos, PNNL/Univ. of Maryland; David Schimel, National Ecological Observatory Network; Margaret Walsh, USDA

Preliminary Review of Adaptation Options for Climate-Sensitive Ecosystems and Resources
Susan Herrod Julius, U.S. EPA; Jordan M. West, U.S. EPA; Jill S. Baron, USGS and Colorado State Univ.; Linda A. Joyce, USDA Forest Service; Brad Griffith, USGS; Peter Kareiva, The Nature Conservancy; Brian D. Keller, NOAA; Margaret Palmer, Univ. of Maryland; Charles Peterson, Univ. of North Carolina; J. Michael Scott, USGS and Univ. of Idaho

Effects of Climate Change on Energy Production and Use in the United States
Thomas J. Wilbanks, ORNL; Vatsal Bhatt, Brookhaven National Lab.; Daniel E. Bilello, National Renewable Energy Lab.; Stanley R. Bull, National Renewable Energy Lab.; James Ekmann, National Energy Technology Lab.; William C. Horak, Brookhaven National Lab.; Y. Joe Huang, Mark D. Levine, Lawrence Berkeley National Lab.; Michael J. Sale, ORNL; David K. Schmalzer, Argonne National Lab.; Michael J. Scott, Pacific Northwest National Lab.

Analyses of the Effects of Global Change on Human Health and Welfare and Human Systems
Janet L. Gamble, U.S. EPA; Kristie L. Ebi, ESS LLC.; Anne E. Grambsch, U.S. EPA; Frances G. Sussman, Environmental Economics Consulting; Thomas J. Wilbanks, ORNL

Impacts of Climate Variability and Change on Transportation Systems and Infrastructure -- Gulf Coast Study
Michael J. Savonis, Federal Highway Administration; Virginia R. Burkett, USGS; Joanne R. Potter, Cambridge Systematics

CCSP Goal 5: Explore the uses and identify the limits of evolving knowledge to manage risks and opportunities related to climate variability and change.

Uses and Limitations of Observations, Data, Forecasts, and Other Projections in Decision Support for Selected Sectors and Regions
John Haynes, NASA; Fred Vukovich, SAIC; Molly K. Macauley, RFF; Daewon W. Byun, Univ. of Houston; David Renne, NREL; Gregory Glass, Johns Hopkins School of Public Health; Holly Hartmann, Univ. of Arizona

Best Practice Approaches for Characterizing, Communicating and Incorporating Scientific Uncertainty in Climate Decision Making
M. Granger Morgan, Dept. of Engineering and Public Policy, Carnegie Mellon Univ.; Hadi Dowlatabadi, Inst. for Resources, Environment and Sustainability, Univ. of British Columbia; Max Henrion, Lumina Decision Systems; David Keith, Dept. of Chemical and Petroleum Engineering and Dept. of Economics, Univ. of Calgary; Robert Lempert, The RAND Corp.; Sandra McBride, Duke Univ.; Mitchell Small, Dept. of Engineering and Public Policy, Carnegie Mellon Univ.; Thomas Wilbanks, Environmental Science Division, ORNL

Decision Support Experiments and Evaluations using Seasonal-to-Inter-annual Forecasts and Observational Data: A Focus on Water Resources
Nancy Beller-Simms, NOAA; Helen Ingram, Univ. of Arizona; David Feldman, Univ. of California; Nathan Mantua, Climate Impacts Group, Univ. of Washington; Katharine L. Jacobs, Arizona Water Institute; Anne M. Waple, STG Inc.

Other Assessments Referenced

Working Group I - Climate Change 2007: The Physical Science Basis
Susan Solomon, Dahe Qin, Martin Manning, Zhenlin Chen, Melinda Marquis, Kristen B. Averyt, Melina M.B. Tignor, Henry LeRoy Miller, Jr.

Working Group II - Climate Change 2007: Impacts, Adaptation and Vulnerability
Martin L. Parry, Osvalda F. Canziani, Jean P. Palutikof, Paul J. van der Linden, Clair E. Hanson

Working Group III - Climate Change 2007: Mitigation of Climate Change
Bert Metz, Ogunlade R. Davidson, Peter R. Bosch, Rutu Dave, Leo A. Meyer

Special Report on Emissions Scenarios
Nebojsa Nakicenovic, Robert Swart

Climate Change and Water
Bryson Bates, Zbigniew W. Kundzewicz, Shaohong Wu, Jean P. Palutikof

Potential Impacts of Climate Change on U.S. Transportation
Henry G. Schwartz, Jr., Alan C. Clark, G. Edward Dickey, George C. Eads, Robert E. Gallamore, Genevieve Giuliano, William J. Gutowski, Jr., Randell H. Iwasaki, Klaus H. Jacob, Thomas R. Karl, Robert J. Lempert, Luisa M. Paiewonsky, S. George H. Philander, Christopher R. Zeppie

Climate Change Impacts on the United States: The Potential Consequences of Climate Variability and Change
Jerry M. Melillo, Anthony C. Janetos, Thomas R. Karl, Eric J. Barron, Virginia Rose Burkett, Thomas F. Cecich, Robert W. Corell, Katharine L. Jacobs, Linda A. Joyce, Barbara Miller, M. Granger Morgan, Edward A. Parson, Richard G. Richels, David S. Schimel

Impacts of a Warming Arctic, Arctic Climate Impact Assessment
Robert W. Corell, Susan J. Hassol, Pål Prestrud, Patricia A. Anderson, Snorri Baldursson, Elizabeth Bush, Terry V. Callaghan, Paul Grabhorn, Gordon McBean, Michael MacCracken, Lars-Otto Reiersen, Jan Idar Solbakken, Gunter Weller
admin
Site Admin
 
Posts: 36135
Joined: Thu Aug 01, 2013 5:21 am

Re: GLOBAL CLIMATE CHANGE IMPACTS IN THE UNITED STATES -- A

Postby admin » Fri Dec 04, 2015 10:53 pm

Acronyms and Abbreviations

ARS: Agricultural Research Service
CCSP: Climate Change Science Program
CIESIN: Center for International Earth Science
Information Network
CIRES: Cooperative Institute for Research in
Environmental Sciences
CMIP: Coupled Model Intercomparison Project
DOE: Department of Energy
EIA: Energy Information Administration
IARC: International Arctic Research Center
IPCC: Intergovernmental Panel on Climate Change
NASA: National Aeronautics and Space Administration
NASS: National Agricultural Statistics Service
NAST: National Assessment Synthesis Team
NCDC: National Climatic Data Center
NESDIS: National Environmental Satellite, Data, and
Information Service
NOAA: Oceanic and Atmospheric Administration
NRCS: Natural Resources Conservation Service
NSIDC: National Snow and Ice Data Center
NWS: National Weather Service
NWFSC: Northwest Fisheries Science Center
PISCO: Partnership for Interdisciplinary Studies of
Coastal Oceans
PLJV: Playa Lakes Joint Venture
SAP: Synthesis and Assessment Product
SRH: Southern Regional Headquarters
USACE: United States Army Corps of Engineers
USBR: States Bureau of Reclamation
USDA: United States Department of Agriculture
U.S. EPA: United States Environmental Protection Agency
USFS: United States Forest Service
USGS: United States Geological Survey
admin
Site Admin
 
Posts: 36135
Joined: Thu Aug 01, 2013 5:21 am

Re: GLOBAL CLIMATE CHANGE IMPACTS IN THE UNITED STATES -- A

Postby admin » Fri Dec 04, 2015 10:54 pm

Part 1 of 4

References

1 CCSP, 2009: Best Practice Approaches for Characterizing, Communicating, and Incorporating Scientific Uncertainty in Decisionmaking. [Morgan, G., H. Dowlatabadi, M. Henrion, D. Keith, R. Lempert, S. McBrid, M. Small, and T. Wilbanks (eds.)]. Synthesis and Assessment Product 5.2. National Oceanic and Atmospheric Administration, Washington DC.

2 Historical data: Lüthi, D., M. Le Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura, and T.F. Stocker, 2008: High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature, 453(7193), 379-382. 1959-2008 data: Tans, P., 2008: Trends in Atmospheric Carbon Dioxide: Mauna Loa. NOAA Earth System Research Laboratory (ESRL). [Web site] <http://www.esrl.noaa.gov/ gmd/ccgg/trends/> Data available at <ftp://ftp.cmdl.noaa. gov/ccg/co2/trends/co2_annmean_mlo.txt> 2100 projected data: International Institute for Applied System Analysis (IIASA) GGI Scenario Database, 2008. <http://www.iiasa.ac.at/Research/GGI/DB/>

3 Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, 2007: Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 129-234.

4 Denman, K.L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S Ramachandran, P.L. da Silva Dias, S.C. Wofsy, and X. Zhang, 2007: Couplings between changes in the climate system and biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 499-587.

5 Ko, M., J.S. Daniel, J.R. Herman, P.A. Newman, and V. Ramaswamy, 2008: The future and recovery. In: Trends in Emissions of Ozone-Depleting Substances, Ozone Layer Recovery, and Implications for Ultraviolet Radiation Exposure. [Ravishankara, A.R., M.J. Kurylo, and C.A. Ennis (eds.)]. Synthesis and Assessment Product 2.4. NOAA’s National Climatic Data Center, Asheville, NC, pp. 133-154.

6 Ravishankara, A.R., M.J. Kurylo, and A.-M. Schmoltner, 2008: Introduction. In: Trends in Emissions of Ozone- Depleting Substances, Ozone Layer Recovery, and Implications for Ultraviolet Radiation Exposure. [Ravishankara, A.R., M.J. Kurylo, and C.A. Ennis (eds.)]. Synthesis and Assessment Product 2.4. NOAA’s National Climatic Data Center, Asheville, NC, pp. 23-28.

7 Blasing, T.J., 2008: Recent Greenhouse Gas Concentrations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. <http://cdiac.ornl.gov/pns/current_ghg. html>

8 Fahey, D.W. (lead author), 2007: Twenty Questions and Answers about the Ozone Layer: 2006 Update. World Meteorological Organization, Geneva, Switzerland, 50 pp. <http://www.esrl. noaa.gov/csd/assessments/2006/twentyquestions.html>

9 Thompson, D.W.J. and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296(5569), 895-899.

10 Kahn, R.A., H. Yu, S.E. Schwartz, M. Chin, G. Feingold, L.A. Remer, D. Rind, R. Halthore, and P. DeCola, 2009: Introduction. In: Atmospheric Aerosol Properties and Climate Impacts. [Chin, M., R.A. Kahn, and S.E. Schwartz (eds.)]. Synthesis and Assessment Product 2.3. National Aeronautics and Space Administration, Washington, DC, pp. 9-20.

11 Solomon, S., G.-K. Plattner, R. Knutti, and P. Friedlingstein, 2009: Irreversible climate change because of carbon dioxide emissions. Proceedings of the National Academy of Sciences, 106(6), 1704-1709.

12 Archer, D., 2005: Fate of fossil fuel CO2 in geologic time. Journal of Geophysical Research, 110, C09S05, doi:10.1029/2004JC002625.

13 Shindell, D.T., H. Levy II, A. Gilliland, M.D. Schwarzkopf, and L.W. Horowitz, 2008: Climate change from short-lived emissions due to human activities. In: Climate Projections Based on Emissions Scenarios for Long-Lived and Short- Lived Radiatively Active Gases and Aerosols. [Levy II, H., D.T. Shindell, A. Gilliland, M.D. Schwarzkopf, and L.W. Horowitz, (eds.)]. Synthesis and Assessment Product 3.2. U.S. Climate Change Science Program, Washington, DC, pp. 27-60.

14 Santer, B.D., J.E. Penner, and P.W. Thorne, 2006: How well can the observed vertical temperature changes be reconciled with our understanding of the causes of these changes? In: Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences [Karl, T.R., S.J. Hassol, C.D. Miller, and W.L. Murray (eds.)]. Synthesis and Assessment Product 1.1 U.S. Climate Change Science Program, Washington, DC, pp. 89-118.

15 Hansen, J., M. Sato, R. Ruedy, L. Nazarenko, A. Lacis, G.A. Schmidt, G. Russell, I. Aleinov, M. Bauer, S. Bauer, N. Bell, B. Cairns, V. Canuto, M. Chandler, Y. Cheng, A. Del Genio, G. Faluveg E. Fleming, A. Friend, T. Hall, C. Jackman, M. Kelley, N. Kiang, D. Koch, J. Lean, J. Lerner, K. Lo, S. Menon, R. Miller, P. Minnis, T. Novakov, V. Oinas, Ja. Perlwitz, Ju. Perlwitz, D. Rind, A. Romanou, D. Shindell, P. Stone, S. Sun, N. Tausnev, D. Thresher, B. Wielicki, T. Wong, M. Yao, and S. Zhang 2005: Efficacy of climate forcings. Journal of Geophysical Research, 110, D18104, doi:10.1029/2005JD005776.

16 National Research Council, 2005: Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties. National Academies Press, Washington DC, 207 pp.

17 Hansen, J., M. Sato, R. Ruedy, A. Lacis, and V. Oinas, 2000: Global warming in the twenty-first century: an alternative scenario. Proceedings of the National Academy of Sciences, 97(18), 9875-9880.

18 Field, C.B., J. Sarmiento, and B. Hales, 2007: The carbon cycle of North America in a global context. In: The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle [King, A.W., L. Dilling, G.P. Zimmerman, D.M. Fairman, R.A. Houghton, G. Marland, A.Z. Rose, and T.J. Wilbanks (eds.)]. Synthesis and Assessment Product 2.2. NOAA’s National Climatic Data Center, Asheville, NC, pp. 21-28.

19 Tarnocai, C., C.-L. Ping, and J. Kimble, 2007: Carbon cycles in the permafrost region of North America. In: The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle [King, A.W., L. Dilling, G.P. Zimmerman, D.M. Fairman, R.A. Houghton, G. Marland, A.Z. Rose, and T.J. Wilbanks (eds.)]. Synthesis and Assessment Product 2.2. NOAA’s National Climatic Data Center, Asheville, NC, pp. 127-138.

20 Jansen, E., J. Overpeck, K.R. Briffa, J.-C. Duplessy, F. Joos, V. Masson-Delmotte, D. Olago, B. Otto-Bliesner, W.R. Peltier, S. Rahmstorf, R. Ramesh, D. Raynaud, D. Rind, O. Solomina, R. Villalba and D. Zhang, 2007: Palaeoclimate. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 433-497.

21 Canadell, J.G., C. Le Quéré, M.R. Raupach, C.B. Field, E.T. Buitenhuis, P. Ciais, T.J. Conway, N.P. Gillett, R.A. Houghton, and G. Marland, 2007: Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences, 104(47), 18866-18870.

22 Royal Society, 2005: Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide. Policy Document 12/05. Royal Society, London, 60 pp.

23 Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R.M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R.G. Najjar, G.-K. Plattner, K.B. Rodgers, C.L. Sabine, J.L. Sarmiento, R. Schlitzer, R.D. Slater, I.J. Totterdell, M.-F. Weirig, Y. Yamanaka, and A. Yool, 2005: Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059), 681-686.

24 Allen, M.R., 2003: Liability for climate change. Nature, 421(6926), 891-892.

25 Clarke, L., J. Edmonds, H. Jacoby, H. Pitcher, J. Reilly, and R. Richels, 2007: Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-report 2.1A of Synthesis and Assessment Product 2.1. U.S. Department of Energy, Office of Biological & Environmental Research, Washington, DC, 154 pp.

26 The spatial average of annual-average surface air temperatures around the globe is commonly referred to as the global average surface air temperature.

27 Meier, M.F., M.B. Dyurgerov, U.K. Rick, S. O’Neel, W.T. Pfeffer, R.S. Anderson, S.P. Anderson, and A.F. Glazovsky, 2007: Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317(5841), 1064-1067.

28 Trenberth, K.E., P.D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A. Klein Tank, D. Parker, F. Rahimzadeh, J.A. Renwick, M. Rusticucci, B. Soden, and P. Zhai, 2007: Observations: surface and atmospheric climate change. In: Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 235-335.

29 Steffen, K., P.U. Clark, J.G. Cogley, D. Holland, S. Marshall, E. Rignot, and R. Thomas, 2008: Rapid changes in glaciers and ice sheets and their impacts on sea level. In: Abrupt Climate Change. Synthesis and Assessment Product 3.4. U.S. Geological Survey, Reston, VA, pp. 60-142.

30 Lanzante, J.R., T.C. Peterson, F.J. Wentz, and K.Y. Vinnikov, 2006: What do observations indicate about the change of temperatures in the atmosphere and at the surface since the advent of measuring temperatures vertically? In: Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences [Karl, T.R., S.J. Hassol, C.D. Miller, and W.L. Murray (eds.)]. Synthesis and Assessment Product 1.1 U.S. Climate Change Science Program, Washington, DC, pp. 47-70.

31 Santer, B.D., P.W. Thorne, L. Haimberger, K.E. Taylor, T.M.L. Wigley, J.R. Lanzante, S. Solomon, M. Free, P.J. Gleckler, P.D. Jones, T.R. Karl, S.A. Klein, C. Mears, D. Nychka, G.A. Schmidt, S.C. Sherwood, and F.J. Wentz, 2008: Consistency of modelled and observed temperature trends in the tropical troposphere. International Journal of Climatology, 28(13), 1703-1722.

32 Uncertainties in the data are an order of magnitude smaller than the trend according to Karl, T.R., J.R. Christy, R.A. Clarke, G.V. Gruza, J. Jouzel, M.E. Mann, J. Oerlemans, M.J. Salinger, and S.-W. Wang, 2001: Observed climate variability and change. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 99-181. Temperature data: Smith, T.M. and R.W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). Journal of Climate, 17(12), 2466-2477. Jones, P.D., M. New, D.E. Parker, S. Martin, and I.G. Rigor, 1999: Surface air temperature and its changes over the past 150 years. Reviews of Geophysics, 37(2), 173-199. Carbon dioxide data: Data from 1974 to present: Tans, P., 2008: Trends in Atmospheric Carbon Dioxide: Mauna Loa. NOAA Earth System Research Laboratory (ESRL). [Web site] <http://www.esrl.noaa.gov/gmd/ ccgg/trends/> Data available at <ftp://ftp.cmdl.noaa.gov/ccg/co2/ trends/co2_annmean_mlo.txt> 1958-1974 data are from the Scripps Institution of Oceanography (Keeling) Mauna Loa Observatory record. <http://scrippsco2. ucsd.edu/> Pre-1958 values are annual points taken from a smooth fit to the Law Dome data: Etheridge, D.M., L.P. Steele, R.L. Langenfelds, R.J. Francey, J.-M. Barnola, and V.I. Morgan, 1996: Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research, 101(D2), 4115-4128.

33 Easterling, D. and M. Wehner, 2009: Is the climate warming or cooling? Geophysical Research Letters, 36, L08706, doi:10.1029/2009GL037810.

34 Barnett, T.P., D.W. Pierce, H.G. Hidalgo, C. Bonfils, B.D. Santer, T. Das, G. Bala, A.W. Wood, T. Nozawa, A.A. Mirin, D.R. Cayan, and M.D. Dettinger, 2008: Human-induced changes in the hydrology of the western United States. Science, 319(5866), 1080-1083.

35 Willett, K.M., N.P. Gillett, P.D. Jones, and P.W. Thorne, 2007: Attribution of observed surface humidity changes to human influence. Nature, 449(7163), 710-712.

36 Santer, B.D., C. Mears, F.J. Wentz, K.E. Taylor, P.J. Gleckler, T.M.L. Wigley, T.P. Barnett, J.S. Boyle, W. Brüggemann, N.P. Gillett, S.A. Klein, G.A. Meehl, T. Nozawa, D.W. Pierce, P.A. Stott, W.M. Washington, and M.F. Wehner, 2007: Identification of human-induced changes in atmospheric moisture content. Proceedings of the National Academy of Sciences, 104(39), 15248-15253.

37 Bindoff, N.L., J. Willebrand, V. Artale, A. Cazenave, J. Gregory, S. Gulev, K. Hanawa, C. Le Quéré, S. Levitus, Y. Nojiri, C.K. Shum, L.D. Talley, and A. Unnikrishnan, 2007: Observations: oceanic climate change and sea level. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 385-432.

38 Barnett, T.P., D.W. Pierce, K.M. AchutaRao, P.J. Gleckler, B.D. Santer, J.M. Gregory, and W.M. Washington, 2005: Penetration of human-induced warming into the world’s oceans. Science, 309(5732), 284-287.

39 Pierce, D.W., T.P. Barnett, K.M. AchutaRao, P.J. Gleckler, J.M. Gregory, and W.M. Washington, 2006: Anthropogenic warming of the oceans: observations and model results. Journal of Climate, 19(10), 1873-1900.

40 Lemke, P., J. Ren, R.B. Alley, I. Allison, J. Carrasco, G. Flato, Y. Fujii, G. Kaser, P. Mote, R.H. Thomas, and T. Zhang, 2007: Observations: changes in snow, ice and frozen ground. In: Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 337-383.

41 Luthcke, S.B., H.J. Zwally, W. Abdalati, D.D. Rowlands, R.D. Ray, R.S. Nerem, F.G. Lemoine, J.J. McCarthy, and D.S. Chinn, 2006: Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314(5803), 1286-1289.

42 Pfeffer, W.T., J.T. Harper, and S. O’Neel, 2008: Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science, 321(5894), 1340-1343.

43 Williams, S.J., B.T. Gutierrez, J.G. Titus, S.K. Gill, D.R. Cahoon, E.R. Thieler, K.E. Anderson, D. FitzGerald, V. Burkett, and J. Samenow, 2009: Sea-level rise and its effects on the coast. In: Coastal Elevations and Sensitivity to Sea-level Rise: A Focus on the Mid-Atlantic Region [J.G. Titus (coordinating lead author), K.E. Anderson, D.R. Cahoon, D.B. Gesch, S.K. Gill, B.T. Gutierrez, E.R. Thieler, and S.J. Williams (lead authors)]. Synthesis and Assessment Product 4.1. U.S. Environmental Protection Agency, Washington, DC, pp. 11-24.

44 IPCC (Intergovernmental Panel on Climate Change), 1996: Summary for policy makers. In: Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., L.G. Meiro Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 1-7.

45 IPCC (Intergovernmental Panel on Climate Change), 2007: Summary for policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 1-18.

46 Wigley, T.M.L., V. Ramaswamy, J.R. Christy, J.R. Lanzante, C.A. Mears, B.D. Santer, and C.K. Folland, 2006: Executive summary. In: Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences [Karl, T.R., S.J. Hassol, C.D. Miller, and W.L. Murray (eds.)]. Synthesis and Assessment Product 1.1 U.S. Climate Change Science Program, Washington, DC, pp. 1-15.

47 National Research Council, 2006: Surface Temperature Reconstructions for the Last 2,000 Years. National Academies Press, Washington DC, 196 pp.

48 Mann, M.E., Z. Zhang, M.K. Hughes, R.S. Bradley, S.K. Miller, S. Rutherford, and F. Ni, 2008: Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences, 105(36), 13252-13257.

49 Hegerl, G.C., F.W. Zwiers, P. Braconnot, N.P. Gillett, Y. Luo, J.A. Marengo Orsini, N. Nicholls, J.E. Penner, and P.A. Stott, 2007: Understanding and attributing climate change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 663-745.

50 LeTreut, H., R. Somerville, U. Cubasch, Y. Ding, C. Mauritzen, A. Mokssit, T. Peterson, and M. Prather, 2007: Historical overview of climate changes science. In: Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 93-127.

51 Santer, B.D., T.M.L. Wigley, T.P. Barnett, and E. Anyamba, 1996: Detection of climate change, and attribution of causes. In: Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., L.G. Meiro Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 407-443.

52 Mitchell, J.F.B., D.J. Karoly, G.C. Hegerl, F.W. Zwiers, M.R. Allen, and J. Marengo, 2001: Detection of climate change and attribution of causes. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 695-738.

53 Santer, B.D., M.F. Wehner, T.M.L. Wigley, R. Sausen, G.A. Meehl, K.E. Taylor, C. Ammann, J. Arblaster, W.M. Washington, J.S. Boyle, and W. Brüggemann, 2003: Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301(5632), 479-483.

54 Zhang, X., F.W. Zwiers, G.C. Hegerl, F.H. Lambert, N.P. Gillett, S. Solomon, P.A. Stott and T. Nozawa, 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448(7152), 461-465.

55 Burke, E.J., S.J. Brown, and N. Christidis, 2006: Modeling the recent evolution of global drought and projections for the twentyfirst century with the Hadley Centre climate model. Journal of Hydrometeorology, 7(5), 1113-1125.

56 Gillett, N.P., F.W. Zwiers, A.J. Weaver, and P.A. Stott, 2003: Detection of human influence on sea level pressure. Nature, 422(6929), 292-294.

57 Gedney, N., P.M. Cox, R.A. Betts, O. Boucher, C. Huntingford, and P.A. Stott, 2006: Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 439(7078), 835-838.

58 Dole, R. and M. Hoerling, 2008: Introduction. In: Reanalysis of Historical Climate Data for Key Atmospheric Features: Implications for Attribution of Causes of Observed Change. [Dole, R., M. Hoerling, and S. Schubert (eds.)]. Synthesis and Assessment Product 1.3. NOAA’s National Climatic Data Center, Asheville, NC, pp. 5-10.

59 The temperature data for the globe is the standard NOAA/NCDC temperature product. The solar data are a composite of 3 different data sets: Fröhlich, C. and J. Lean, 2004: Solar radiative output and its variability: evidence and mechanisms. Astronomy and Astrophysics Review, 12(4), 273-320. Willson, R.C. and A.V. Mordvinov, 2003: Secular total solar irradiance trend during solar cycles 21023. Geophysical Research Letters, 30(5), 1199, doi:10.1029/2002GL016038. Dewitte, S., D. Crommelynck, S. Mekaoui, and A. Jouko, 2004: Measurement and uncertainty of the long-term total solar irradiance trend. Solar Physics, 224(1-2), 209-216.

60 Lean, J.L. and D.H. Rind, 2008: How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophysical Research Letters, 35, L18701, doi:10.1029/2008GL034864.

61 Min, S.-K., X. Zhang, F.W. Zwiers, and T. Agnew, 2008: Human influence on Arctic sea ice detectable from early 1990s onwards. Geophysical Research Letters, 35, L21701, doi:10.1029/2008GL035725.

62 Gillett, N.P., D.A. Stone, P.A. Stott, T. Nozawa, A.Y. Karpechko, G.C. Hegerl, M.F. Wehner, and P.D. Jones, 2008: Attribution of polar warming to human influence. Nature Geoscience, 1(11), 750-754.

63 Ramaswamy, V., J.W. Hurrell, G.A. Meehl, A. Phillips, B.D. Santer, M.D. Schwarzkopf, D.J. Seidel, S.C. Sherwood, and P.W. Thorne, 2006: Why do temperatures vary vertically (from the surface to the stratosphere) and what do we understand about why they might vary and change over time? In: Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences [Karl, T.R., S.J. Hassol, C.D. Miller, and W.L. Murray (eds.)]. Synthesis and Assessment Product 1.1. U.S. Climate Change Science Program, Washington, DC, pp. 15-28.

64 Stott, P.A., 2003: Attribution of regional-scale temperature changes to anthropogenic and natural causes. Geophysical Research Letters, 30(14), 1724, doi:10.1029/2003GL017324.

65 Zwiers, F.W. and X. Zhang, 2003: Towards regional-scale climate change detection. Journal of Climate, 16(5), 793-797.

66 Santer, B.D., T.M.L. Wigley, P.J. Glecker, C. Bonfils, M.F. Wehner, K. AchutaRao, T.P. Barnett, J.S. Boyle, W. Brüggemann, M. Fiorino, N.P. Gillett, J.E. Hansen, P.D. Jones, S.A. Klein, G.A. Meehl, S.C.B. Raper, R.W. Reynolds, K.E. Taylor, and W.M. Washington, 2006: Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proceedings of the National Academy of Sciences, 103(38), 13905-13910.

67 Gillett, N.P., P.A. Stott, and B.D. Santer, 2008: Attribution of cyclogenesis region sea surface temperature change to anthropogenic influence. Geophysical Research Letters, 35, L09707, doi:10.1029/2008GL033670.

68 Gutowski, W.J., G.C. Hegerl, G.J. Holland, T.R. Knutson, L.O. Mearns, R.J. Stouffer, P.J. Webster, M.F. Wehner, and F.W. Zwiers, 2008: Causes of observed changes in extremes and projections of future changes. In: Weather and Climate Extremes in a Changing Climate: Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands [Karl, T.R., G.A. Meehl, C.D. Miller, S.J. Hassol, A.M. Waple, and W.L. Murray (eds.)]. Synthesis and Assessment Product 3.3. U.S. Climate Change Science Program, Washington, DC, pp. 81-116.

69 Root, T.L., D.P. MacMynowski, M.D. Mastrandrea, and S.H. Schneider, 2005: Human-modified temperatures induce species changes: joint attribution. Proceedings of the National Academy of Sciences, 102(21), 7465-7469.

70 Janetos, A., L. Hansen, D. Inouye, B.P. Kelly, L. Meyerson, B. Peterson, and R. Shaw, 2008: Biodiversity. In: The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States [Backlund, P., A. Janetos, D. Schimel, J. Hatfield, K. Boote, P. Fay, L. Hahn, C. Izaurralde, B.A. Kimball, T. Mader, J. Morgan, D. Ort, W. Polley, A. Thomson, D. Wolfe, M.G. Ryan, S.R. Archer, R. Birdsey, C. Dahm, L. Heath, J. Hicke, D. Hollinger, T. Huxman, G. Okin, R. Oren, J. Randerson, W. Schlesinger, D. Lettenmaier, D. Major, L. Poff, S. Running, L. Hansen, D. Inouye, B.P. Kelly, L. Meyerson, B. Peterson, and R. Shaw (eds.)]. Synthesis and Assessment Product 4.3. U.S. Department of Agriculture, Washington, DC, pp. 151-181.

71 CCSP, 2006: Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences [Karl, T.R., S.J. Hassol, C.D. Miller, and W.L. Murray (eds.)]. Synthesis and Assessment Product 1.1. U.S. Climate Change Science Program, Washington, DC, 164 pp.

72 Smith, T.M., R.W. Reynolds, T.C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). Journal of Climate, 21(10), 2283-2296.

73 Haimberger, L., C. Tavolato, and S. Sperka, 2008: Toward elimination of the warm bias in historic radiosonde temperature records – some new results from a comprehensive intercomparison of upper air data. Journal of Climate, 21(18), 4587-4606.

74 Sherwood, S.C., C.L. Meyer, R.J. Allen, and H.A. Titchner, 2008: Robust tropospheric warming revealed by iteratively homogenized radiosonde data. Journal of Climate, 21(20), 5336-5352.

75 Titchner, H.A., P.W. Thorne, M.P. McCarthy, S.F.B. Tett, L. Haimberger, and D.E. Parker, 2008: Critically reassessing tropospheric temperature trends from radiosondes using realistic validation experiments. Journal of Climate, 22(3), 465-485.

76 Delworth, T.L., P.U. Clark, M. Holland, W.E. Johns, T. Kuhlbrodt, J. Lynch-Stieglitz, C. Morrill, R. Seager, A.J. Weaver, and R. Zhang, 2008: The potential for abrupt change in the Atlantic Meridional Overturning Circulation. In: Abrupt Climate Change. Synthesis and Assessment Product 3.4. U.S. Geological Survey, Reston, VA, pp. 258-359.

77 Wentz, F.J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317(5835), 233-235.

78 Stott, P.A., D.A. Stone, and M.R. Allen, 2004: Human contribution to the European heatwave of 2003. Nature, 432(7017), 610-614.

79 CCSP, 2008: Introduction. In: Climate Models: An Assessment of Strengths and Limitations [Bader, D.C., C. Covey, W.J. Gutowski Jr., I.M. Held, K.E. Kunkel, R.L. Miller, R.T. Tokmakian, and M.H. Zhang (authors)]. Synthesis and Assessment Product 3.1 U.S. Department of Energy, Office of Biological and Environmental Research, Washington, DC, pp. 7-12.

80 Randall, D.A., R.A. Wood, S. Bony, R. Coman, T. Fichefet, J. Fyfe, V. Kattsov, A. Pitman, J. Shukla, J. Srinivasan, R.J. Stouffer, A. Sumi, and K.E. Taylor, 2007: Climate models and their evaluation. In: Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 589-662.

81 Nakićenović, N. and R. Swart (eds.), 2000: Special Report on Emissions Scenarios. A special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, 599 pp. <http://www. ipcc.ch/ipccreports/sres/emission/index.htm>

82 Raupach, M.R., G. Marland, P. Ciais, C. Le Quéré, J.G. Canadell, G. Klepper, and C.B. Field, 2007: Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences, 104(24), 10288-10293.

83 O’Neill, B.C. and M. Oppenheimer, 2004: Climate change impacts are sensitive to the concentration stabilization path. Proceedings of the National Academy of Sciences, 101(47), 16411-16416.

84 Schneider, S.H. and M.D. Mastrandrea, 2005: Probabilistic assessment of ‘‘dangerous’’ climate change and emissions pathways. Proceedings of the National Academy of Sciences, 102(44), 15728-15735.

85 Lenton, T.M., H. Held, E. Kriegler, J.W. Hall, W. Lucht, S. Rahmstorf, and H.J. Schellnhuber, 2008: Tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences, 105(6), 1786-1793.

86 Hansen, J., M. Sato, R. Ruedy, P. Kharecha, A. Lacis, R. Miller, L. Nazarenko, K. Lo, G.A. Schmidt, G. Russell, I. Aleinov, S. Bauer, E. Baum, B. Cairns, V. Canuto, M. Chandler, Y. Cheng, A. Cohen, A. Del Genio, G. Faluvegi, E. Fleming, A. Friend, T. Hall, C. Jackman, J. Jonas, M. Kelley, N.Y. Kiang, D. Koch, G. Labow, J. Lerner, S. Menon, T. Novakov, V. Oinas, Ja. Perlwitz, Ju. Perlwitz, D. Rind, A. Romanou, R. Schmunk, D. Shindell, P. Stone, S. Sun, D. Streets, N. Tausnev, D. Thresher, N. Unger, M. Yao, and S. Zhang, 2007: Dangerous human-made interference with climate: a GISS modelE study. Atmospheric Chemistry and Physics, 7(9), 2287-2312.

87 Ramanathan, V. and Y. Feng, 2008: On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead. Proceedings of the National Academy of Sciences, 105(38), 14245-14250.

88 Meinshausen, M., 2006: What does a 2°C target mean for greenhouse gas concentrations? - A brief analysis based on multi-gas emission pathways and several climate sensitivity uncertainty estimates. In: Avoiding Dangerous Climate Change [Schellnhuber, J.S., W. Cramer, N. Nakićenović, T.M.L. Wigley, and G. Yohe (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 265-280.

89 Meinshausen, M., B. Hare, T.M.L. Wigley, D. van Vuuren, M.G.J. den Elzen, and R. Swart, 2006: Multi-gas emission pathways to meet climate targets. Climatic Change, 75(1), 151-194.

90 Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A.J. Weaver, and Z.-C. Zhao, 2007: Global climate projections. In: Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 747-845.

91 Refer to the description of the emissions scenarios in the Global Climate Change section on pages 22-25. “Lower emissions scenario” refers to IPCC SRES B1, “higher emissions scenario” refers to A2 and “even higher emissions scenario” refers to A1FI.

92 IPCC Emissions Scenarios (Even Higher, Higher Emission Scenario, Lower Emission Scenario): Nakićenović, N. and R. Swart (eds.), 2000: Appendix VII: Data tables. In: Special Report on Emissions Scenarios. A special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York. <http://www. grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/emission/> Emission trajectories are spline fits as per Raupach, M.R., G. Marland, P. Ciais, C. Le Quéré, J.G. Canadell, G. Klepper, and C.B. Field, 2007: Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences, 104(24), 10288-10293. Stabilization scenario (450 ppm): CCSP 2.1a Scenario Information 070707 data file. From: Clarke, L., J. Edmonds, H. Jacoby, H. Pitcher, J. Reilly, and R. Richels, 2007: Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-report 2.1A of Synthesis and Assessment Product 2.1. U.S. Department of Energy, Office of Biological & Environmental Research, Washington, DC. The emissions and concentrations shown were from MINICAM 1 and 2. See CCSP 2.1A Executive summary for more information. Spread sheet available at <http://www.climate science.gov/Library/sap/sap2-1/finalreport/default.htm> Observations of CO2 emissions (Fossil Fuel CO2 Emissions graphic) are updates to: Marland, G., B. Andres, T. Boden, 2008: Global CO2 Emissions from Fossil-Fuel Burning, Cement Manufacture, and Gas Flaring: 1751-2005. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN. <http://cdiac.ornl.gov/ftp/ndp030/global.1751_2005.ems> Observations of CO2 concentrations (Atmospheric CO2 Concentrations graphic): Tans, P., 2008: Trends in Atmospheric Carbon Dioxide: Mauna Loa. NOAA Earth System Research Laboratory (ESRL). [Web site] <http://www.esrl.noaa.gov/gmd/ ccgg/trends/> Data available at <ftp://ftp.cmdl.noaa.gov/ccg/co2/ trends/co2_annmean_mlo.txt>

93 CMIP3-A: This analysis uses 15 models simulations from the WCRP CMIP3 that were available at resolutions finer than 4 degrees (CCSM3.0, CSIRO, UKMO-HadCM3, IPSL, ECHAM5/MPI, CGCM3.1(T47), GFDL2.0, UKMO-HadGEM1, MIROC3.2(medres), MRI-CGCM2.3.2a, CNRM, GFDL2.1, INMCM3, ECHO-G, PCM). See Wehner, M., 2005: Changes in daily precipitation and surface air temperature extremes in the IPCC AR4 models. US CLIVAR Variations, 3(3), 5-9. Hatching indicates at least two out of three models agree on the sign of the projected change in precipitation. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset, <http:// www-pcmdi.llnl.gov/projects/cmip/index.php>. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. For an overview and documentation of the CMIP3 modelling activity, see Meehl, G.A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J.F.B. Mitchell, R.J. Stouffer, and K.E. Taylor, 2007: The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bulletin of the American Meteorological Society, 88(9), 1383-1394.

94 Hare, B. and M. Meinshausen, 2006: How much warming are we committed to and how much can be avoided? Climatic Change, 75(1), 111-149.

95 den Elzen, M.G.J. and M. Meinshausen, 2006: Multi-gas emission pathways for meeting the EU 2°C climate target. In: Avoiding Dangerous Climate Change [Schellnhuber, J.S., W. Cramer, N. Nakićenović, T.M.L. Wigley and G. Yohe (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 299-310.

96 Seidel, D.J., Q. Fu, W.J. Randel, and T.J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nature Geoscience, 1(1), 21-24.

97 Cook, E.R., P.J. Bartlein, N. Diffenbaugh, R. Seager, B.N. Shuman, R.S. Webb, J.W. Williams, and C. Woodhouse, 2008: Hydrological variability and change. In: Abrupt Climate Change. Synthesis and Assessment Product 3.4. U.S. Geological Survey, Reston, VA, pp. 143-257.

98 Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436(7051), 686-688.

99 Vecchi, G.A., K.L. Swanson, and B.J. Soden, 2008: Whither hurricane activity? Science, 322(5902), 687-689.

100 Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bulletin of the American Meteorological Society, 89(3), 347-367.

101 Vecchi, G.A. and B.J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450(7172), 1077-1070.

102 Alley, R.B., P.U. Clark, P. Huybrechts, and I. Joughin, 2005: Icesheet and sea-level changes ice-sheet and sea-level changes. Science, 310(5747), 456-460.

103 Rahmstorf, S., 2007: A semi-empirical approach to projecting future sea-level rise. Science, 315(5810), 368-370.

104 Mitrovica, J.X., N. Gomez, and P.U. Clark, 2009: The sea-level fingerprint of West Antarctic collapse. Science, 323(5915), 753.

105 Clark, P.U., A.J. Weaver, E. Brook, E.R. Cook, T.L. Delworth, and K. Steffen, 2008: Introduction: Abrupt changes in the Earth’s climate system. In: Abrupt Climate Change. Synthesis and Assessment Product 3.4. U.S. Geological Survey, Reston, VA, pp. 19-59.

106 Brook, E., D. Archer, E. Dlugokencky, S. Frolking, and D. Lawrence, 2008: Potential for abrupt changes in atmospheric methane. In: Abrupt Climate Change. Synthesis and Assessment Product 3.4. U.S. Geological Survey, Reston, VA, pp. 360-452.

107 Temperatures for the contiguous U.S. are based on data from the U.S. Historical Climatology Network Version 2 (Menne et al. 2008). Temperatures for Alaska, Hawaii, and Puerto Rico are based on data from the Cooperative Observers Network adjusted to remove non-climatic influences such as changes in instruments and observer practices and changes in the station environment (Menne and Williams, 2008). U.S. time series on page 27 is calculated with data for the contiguous US, Alaska, and Hawaii. US map on page 28 lower left includes observed temperature change in Puerto Rico. Winter temperature trend map in the agriculture section, page 76, is for the contiguous US only. References for this endnote: Menne, M.J., C.N. Williams, and R.S. Vose, 2009: The United States Historical Climatology Network Monthly Temperature Data - Version 2. Bulletin of the American Meteorological Society, Early online release, 25 February 2009, doi:10.1175/2008BAMS2613.1 Menne, M.J. and C.N. Williams Jr., 2008: Homogenization of temperature series via pairwise comparisons. Journal of Climate, 22(7), 1700-1717.

108 Christensen, J.H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R.K. Kolli, W.-T. Kwon, R. Laprise, V. Magaña Rueda, L. Mearns, C.G. Menéndez, J. Räisänen, A. Rinke, A. Sarr, and P. Whetton, 2007: Regional climate projections. In: Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 847-940.

109 CMIP3-C: Analysis for the contiguous U.S. was based on methods described in: Hayhoe, K., D. Cayan, C.B. Field, P.C. Frumhoff, E.P. Maurer, N.L. Miller, S.C. Moser, S.H. Schneider, K.N. Cahill, E.E. Cleland, L. Dale, R. Drapek, R.M. Hanemann, L.S. Kalkstein, J. Lenihan, C.K. Lunch, R.P. Neilson, S.C. Sheridan, and J.H. Verville, 2004: Emission pathways, climate change, and impacts on California. Proceedings of the National Academy of Sciences, 101(34), 12422-12427; and Hayhoe, K., C. Wake, B. Anderson, X.-Z. Liang, E. Maurer, J. Zhu, J. Bradbury, A. DeGaetano, A.M. Stoner, and D. Wuebbles, 2008: Regional climate change projections for the Northeast USA. Mitigation and Adaptation Strategies for Global Change, 13(5-6), 425-436. This analysis uses 16 models simulations from the WCRP CMIP3. Where models had multiple runs, only the first run available from each model was used. See <http://gdo-dcp.ucllnl.org/downscaled_ cmip3_projections/dcpInterface.html> for more information. The Alaskan projections are based on 14 models that best captured the present climate of Alaska; see Walsh, J.E., W.L. Chaman, V. Romanovsky, J.H. Christensen, and M. Stendel, 2008: Global climate model performance over Alaska and Greenland. Journal of Climate, 21(23), 6156-6174. Caribbean and Pacific islands analyses use 15 models simulations from the WCRP CMIP3 that were available at resolutions finer than 4 degrees (CCSM3.0, CSIRO, UKMO-HadCM3, IPSL, ECHAM5/MPI, CGCM3.1(T47), GFDL2.0, UKMO-HadGEM1, MIROC3.2(medres), MRI-CGCM2.3.2a, CNRM, GFDL2.1, INMCM3, ECHO-G, PCM). See Wehner, M., 2005: Changes in daily precipitation and surface air temperature extremes in the IPCC AR4 models. US CLIVAR Variations, 3(3), 5-9. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset, <http:// www-pcmdi.llnl.gov/projects/cmip/index.php>. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. For an overview and documentation of the CMIP3 modelling activity, see Meehl, G.A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J.F.B. Mitchell, R.J. Stouffer, and K.E. Taylor, 2007: The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bulletin of the American Meteorological Society, 88(9), 1383-1394.

110 Detailed local-scale projections about temperature and precipitation changes displayed in this report were generated using welldocumented “statistical downscaling” techniques [Wood et al., 2002] for the contiguous U.S. and Alaska. These techniques use statistical relationships between surface observations and climate simulations of the past to develop modifications for the global model results. These modifications are then applied to the climate projections for the future scenarios. The approach is also used to drive daily simulations by a well-established hydrological modeling framework for the contiguous U.S. [Liang et al., 1994]. This method, which modifies global climate model simulations to better account for landscape variations and other features affecting climate at the regional to local scale, has been previously applied to generate high-resolution regional climate projections for the Northeast, Midwest, Northwest, and Southwest [Wood et al., 2004; Hayhoe et al., 2004; Hayhoe et al., 2008; Cayan et al., 2008; Cherkauer et al., 2009]. Comparison of these methods with dynamically downscaled projections generated using regional climate model simulations provide strong justification for the use of such techniques [Wood et al., 2004; Hayhoe et al., 2008]. References for this endnote: Cayan, D., E. Maurer, M. Dettinger, M. Tyree, and K. Hayhoe, 2008: Climate change scenarios for the California region. Climatic Change, 87(Supplement 1), S21-S42. Cherkauer, K. and T. Sinha, 2009: Hydrologic impacts of projected future climate change in the Lake Michigan region. Journal of Great Lakes Research, in press. Hayhoe, K., D. Cayan, C.B. Field, P.C. Frumhoff, E.P. Maurer, N.L. Miller, S.C. Moser, S.H. Schneider, K.N. Cahill, E.E. Cleland, L. Dale, R. Drapek, R.M. Hanemann, L.S. Kalkstein, J. Lenihan, C.K. Lunch, R.P. Neilson, S.C. Sheridan, and J.H. Verville, 2004: Emission pathways, climate change, and impacts on California. Proceedings of the National Academy of Sciences, 101(34), 12422-12427. Hayhoe, K., C. Wake, B. Anderson, X.-Z. Liang, E. Maurer, J. Zhu, J. Bradbury, A. DeGaetano, A.M. Stoner, and D. Wuebbles, 2008: Regional climate change projections for the Northeast USA. Mitigation and Adaptation Strategies for Global Change, 13(5-6), 425-436. Liang, X., D. Lettenmaier, E. Wood, and S. Burges, 1994: A simple hydrologically-based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research, 99(D7), 14415-14428. Maurer, E.P., A.W. Wood, J.C. Adam, D.P. Lettenmaier, and B. Nijssen, 2002: A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States. Journal of Climate, 15(22), 3237-3251. Wood, A.W., L.R. Leung, V. Sridhar, and D.P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62(1-3), 189-216. Wood, A.W., E.P. Maurer, A. Kumar, and D.P. Lettenmaier, 2002: Long range experimental hydrologic forecasting for the eastern U.S. Journal of Geophysical Research, 107(D20), 4429, doi:10.1029/2001JD000659.
admin
Site Admin
 
Posts: 36135
Joined: Thu Aug 01, 2013 5:21 am

Re: GLOBAL CLIMATE CHANGE IMPACTS IN THE UNITED STATES -- A

Postby admin » Fri Dec 04, 2015 10:55 pm

Part 2 of 4

111 NOAA’s National Climatic Data Center, 2008: The USHCN Version 2 Serial Monthly Dataset. [Web site] <http://www.ncdc.noaa.gov/ oa/climate/research/ushcn/>

112 Kunkel, K.E., P.D. Bromirski, H.E. Brooks, T. Cavazos, A.V. Douglas, D.R. Easterling, K.A. Emanuel, P.Ya. Groisman, G.J. Holland, T.R. Knutson, J.P. Kossin, P.D. Komar, D.H. Levinson, and R.L. Smith, 2008: Observed changes in weather and climate extremes. In: Weather and Climate Extremes in a Changing Climate: Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands [Karl, T.R., G.A. Meehl, C.D. Miller, S.J. Hassol, A.M. Waple, and W.L. Murray (eds.)]. Synthesis and Assessment Product 3.3. U.S. Climate Change Science Program, Washington, DC, pp. 35-80.

113 Groisman, P.Ya., R.W. Knight, T.R. Karl, D.R. Easterling, B. Sun, and J.H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States, trends derived from in situ observations. Journal of Hydrometeorology, 5(1), 64-85. The climate regions are different than those used in this article but the methodology is identical.

114 Karl, T.R., G.A. Meehl, T.C. Peterson, K.E. Kunkel, W.J. Gutowski Jr., and D.R. Easterling, 2008: Executive summary. In: Weather and Climate Extremes in a Changing Climate. Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands [Karl, T.R., G.A. Meehl, C.D. Miller, S.J. Hassol, A.M. Waple, and W.L. Murray (eds.)]. Synthesis and Assessment Product 3.3. U.S. Climate Change Science Program, Washington, DC, pp. 1-9.

115 Seager, R., M. Ting, I. Held, Y. Kushnir, J. Lu, G. Vecchi, H.-P. Huang, N. Harnik, A. Leetmaa, N.-C. Lau, C. Li, J. Velez, and N. Naik, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316(5828), 1181-1184.

116 USGS, 2005: Changes in Streamflow Timing in the Western United States in Recent Decades. USGS fact sheet 2005-3018. U.S. Geological Survey, National Streamflow Information Program, La Jolla, CA, 4 pp. <http://pubs.usgs.gov/fs/2005/3018/>

117 CMIP3-B: Analysis for the contiguous U.S. was based on methods described in: Hayhoe, K., D. Cayan, C.B. Field, P.C. Frumhoff, E.P. Maurer, N.L. Miller, S.C. Moser, S.H. Schneider, K.N. Cahill, E.E. Cleland, L. Dale, R. Drapek, R.M. Hanemann, L.S. Kalkstein, J. Lenihan, C.K. Lunch, R.P. Neilson, S.C. Sheridan, and J.H. Verville, 2004: Emission pathways, climate change, and impacts on California. Proceedings of the National Academy of Sciences, 101(34), 12422-12427; and Hayhoe, K., C. Wake, B. Anderson, X.-Z. Liang, E. Maurer, J. Zhu, J. Bradbury, A. DeGaetano, A.M. Stoner, and D. Wuebbles, 2008: Regional climate change projections for the Northeast USA. Mitigation and Adaptation Strategies for Global Change, 13(5-6), 425-436. This analysis uses 16 models simulations from the WCRP CMIP3. Where models had multiple runs, only the first run available from each model was used. See <http://gdo-dcp.ucllnl.org/downscaled_cmip3_ projections/dcpInterface.html> for more information. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset, <http:// www-pcmdi.llnl.gov/projects/cmip/index.php>. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. For an overview and documentation of the CMIP3 modelling activity, see Meehl, G.A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J.F.B. Mitchell, R.J. Stouffer, and K.E. Taylor, 2007: The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bulletin of the American Meteorological Society, 88(9), 1383-1394.

118 Swanson, K.L., 2008: Nonlocality of Atlantic tropical cyclone intensities. Geochemistry, Geophysics, Geosystems, 9, Q04V01, doi:10.1029/2007GC001844.

119 Knutson, T.R., J.J. Sirutis, S.T. Garner, G.A. Vecchi, and I. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nature Geoscience, 1(6), 359-364.

120 Emanuel, K., 2007: Environmental factors affecting tropical cyclone power dissipation. Journal of Climate, 20(22), 5497-5509.

121 Number of strongest hurricanes, number of landfalling strongest hurricanes, and number of landfalling hurricanes are based on data obtained from NOAA’s Oceanographic and Meteorological Laboratory: <http://www.aoml.noaa.gov/hrd/hurdat/ushurrlist18512005- gt.txt> with updates. The total number of named storms are adjusted to account for missing tropical storms and hurricanes in the pre-satellite era using the method of Vecchi and Knutson (2008). Basin and landfalling totals are displayed in 5-year increments (pentads) from 1881 through 2010. The final 5-year period was standardized to a comparable 5-year period assuming the level of activity from 2006 to 2008 persists through 2010. Vecchi, G.A. and T.R. Knutson, 2008: On estimates of historical North Atlantic tropical cyclone activity. Journal of Climate, 21(14), 3580-3600.

122 Elsner, J.B., J.P. Kossin, and T.H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455(7209), 92-95.

123 Bell, G.D. and M. Chelliah, 2006: Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. Journal of Climate, 19(4), 590-612.

124 Levinson, D.H. and J. Lawrimore (eds.), 2008: State of the climate in 2007. Bulletin of the American Meteorological Society, 89(7, Supplement), S1-S179.

125 Kossin, J.P., K.R. Knapp, D.J. Vimont, R.J. Murnane, and B.A. Harper, 2007: A globally consistent reanalysis of hurricane variability and trends. Geophysical Research Letters, 34, L04815, doi:10.1029/2006GL028836.

126 Rahmstorf, S., A. Cazenave, J.A. Church, J.E. Hansen, R.F. Keeling, D.E. Parker, and R.C.J. Somerville, 2007: Recent climate observations compared to projections. Science, 316(5825), 709.

127 Zervas, C., 2001: Sea Level Variations of the United States 1985- 1999. NOAA technical report NOS CO-OPS 36. National Oceanic and Atmospheric Administration, Silver Spring, MD, 66 pp. <http://tidesandcurrents.noaa.gov/publications/techrpt36doc.pdf> Trends were calculated for locations that had at least 10 months of data per year and at least 41 years of data during the 51-year period.

128 Sea-level rise numbers are calculated based on an extrapolation of NOAA tide gauge stations with records exceeding 50 years, as reported in Zervas, C., 2001: Sea Level Variations of the United States 1985-1999. NOAA technical report NOS CO-OPS 36. National Oceanic and Atmospheric Administration, Silver Spring, MD, 66 pp. <http://tidesandcurrents.noaa.gov/publications/ techrpt36doc.pdf>

129 Kunkel, K.E., N.E. Westcott, and D.A.R. Knistovich, 2002: Assessment of potential effects of climate changes on heavy lake-effect snowstorms near Lake Erie. Journal of Great Lakes Research, 28(4), 521-536.

130 Burnett, A.W., M.E. Kirby, H.T. Mullins, and W.P. Patterson, 2003: Increasing Great Lake-effect snowfall during the twentieth century: a regional response to global warming? Journal of Climate, 16(21), 3535-3542.

131 Trapp, R.J., N.S. Diffenbaugh, H.E. Brooks, M.E. Baldwin, E.D. Robinson, and J.S. Pal, 2007: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proceedings of the National Academy of Sciences, 104(50), 19719-19723.

132 ACIA, 2005: Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, UK, and New York, 1042 pp. <http:// www.acia.uaf.edu/pages/scientific.html>

133 Stroeve, J., M.M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: faster than forecast. Geophysical Research Letters, 34, L09501, doi:10.1029/2007GL029703.

134 L’Heureux, M.L., A. Kumar, G.D. Bell, M.S. Halpert, and R.W. Higgins, 2008: Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophysical Research Letters, 35, L20701, doi:10.1029/2008GL035205.

135 Johannessen, O.M., 2008: Decreasing Arctic sea ice mirrors increasing CO2 on decadal time scale. Atmospheric and Oceanic Science Letters, 1(1), 51-56.

136 National Snow and Ice Data Center, 2008: Arctic Sea Ice Down to Second-Lowest Extent; Likely Record-Low Volume. Press release October 2, 2008. <http://nsidc.org/news/press/20081002_seaice_ pressrelease.html>

137 Polyak, L., J. Andrews, J. Brigham-Grette, D. Darby, A. Dyke, S. Funder, M. Holland, A. Jennings, J. Savelle, M. Serreze, and E. Wolff, 2009: History of sea ice in the Arctic. In: Past Climate Variability and Change in the Arctic and at High Latitude. Synthesis and Assessment Product 1.2. U.S. Geological Survey, Reston, VA, pp. 358-420.

138 Images from Sea Ice Yearly Minimum 1979-2007. [Web site] NASA/ Goddard Space Flight Center Scientific Visualization Studio. Thanks to Rob Gerston (GSFC) for providing the data. <http://svs. gsfc.nasa.gov/goto?3464>

139 Fetterer, F., K. Knowles, W. Meier, and M. Savoie, 2002: updated 2008: Sea Ice Index. [Web site] National Snow and Ice Data Center, Boulder, CO. <http://nsidc.org/data/seaice_index/>

140 Pacala, S., R. Birdsey, S. Bridgham, R.T. Conant, K. Davis, B. Hales, R. Houghton, J.C. Jenkins, M. Johnston, G. Marland, and K. Paustian, 2007: The North American carbon budget past and present. In: The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle [King, A.W., L. Dilling, G.P. Zimmerman, D.F. Fairman, R.A. Houghton, G. Marland, A.Z. Rose, and T.J. Wilbanks (eds.)]. Synthesis and Assessment Product 2.2. National Oceanic and Atmospheric Administration, National Climatic Data Center, Asheville, NC, pp. 29-36.

141 Marland, G., R.J. Andres, T.J. Blasing, T.A. Boden, C.T. Broniak, J.S. Gregg, L.M. Losey, and K. Treanton, 2007: Energy, industry, and waste management activities: an introduction to CO2 emissions from fossil fuels. In: The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle [King, A.W., L. Dilling, G.P. Zimmerman, D.M. Fairman, R.A. Houghton, G. Marland, A.Z. Rose, and T.J. Wilbanks (eds.)]. Synthesis and Assessment Product 2.2. National Oceanic and Atmospheric Administration, National Climatic Data Center, Asheville, NC, pp. 57-64.

142 Bates, B.C., Z.W. Kundzewicz, S. Wu, and J.P. Palutikof (eds.), 2008: Climate Change and Water. Technical paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva, Switzerland, 210 pp.

143 Feng, S. and Q. Hu, 2007: Changes in winter snowfall/precipitation ratio in the contiguous United States. Journal of Geophysical Research, 112, D15109, doi:10.1029/2007JD008397.

144 Guttman, N.B. and R.G. Quayle, 1996: A historical perspective of U.S. climate divisions. Bulletin of the American Meteorological Society, 77(2), 293-303. Operational practices described in this paper continue.

145 Groisman, P.Ya., R.W. Knight, D.R. Easterling, T.R. Karl, G.C. Hegerl, and V.N. Razuvaev, 2005: Trends in intense precipitation in the climate record. Journal of Climate, 18(9), 1326-1350.

146 Kundzewicz, Z.W., L.J. Mata, N.W. Arnell, P. Döll, P. Kabat, B. Jiménez, K.A. Miller, T. Oki, Z. Sen, and I.A. Shiklomanov, 2007: Freshwater resources and their management. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 173-210.

147 Groisman, P.Ya. and R.W. Knight, 2008: Prolonged dry episodes over the conterminous United States: new tendencies emerging during the last 40 years. Journal of Climate, 21(9), 1850-1862.

148 Tebaldi, C., K. Hayhoe, J.M. Arblaster, and G.A. Meehl, 2006: Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79(3-4), 185-211.

149 Lettenmaier, D., D. Major, L. Poff, and S. Running, 2008: Water resources. In: The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States [Backlund, P., A. Janetos, D. Schimel, J. Hatfield, K. Boote, P. Fay, L. Hahn, C. Izaurralde, B.A. Kimball, T. Mader, J. Morgan, D. Ort, W. Polley, A. Thomson, D. Wolfe, M.G. Ryan, S.R. Archer, R. Birdsey, C. Dahm, L. Heath, J. Hicke, D. Hollinger, T. Huxman, G. Okin, R. Oren, J. Randerson, W. Schlesinger, D. Lettenmaier, D. Major, L. Poff, S. Running, L. Hansen, D. Inouye, B.P. Kelly, L. Meyerson, B. Peterson, and R. Shaw (eds.)]. Synthesis and Assessment Product 4.3. U.S. Department of Agriculture, Washington, DC, pp. 121-150.

150 Hayhoe, K., C.P. Wake, T.G. Huntington, L. Luo, M.D. Schwartz, J. Sheffield, E. Wood, B. Anderson, J. Bradbury, A. DeGaetano, T.J. Troy, and D. Wolfe, 2007: Past and future changes in climate and hydrological indicators in the U.S. Northeast. Climate Dynamics, 28(4), 381-407.

151 Milly, P.C.D., J. Betancourt, M. Falkenmark, R.M. Hirsch, Z.W. Kundzewicz, D.P. Lettenmaier, and R.J. Stouffer, 2008: Stationarity is dead: Whither water management? Science, 319(5863), 573-574.

152 Christensen, N.S., A.W. Wood, N. Voisin, D.P. Lettenmaier, and R.N. Palmer, 2004: The effects of climate change on the hydrology and water resources of the Colorado River basin. Climatic Change, 62(1-3), 337-363.

153 Mote, P., A. Hamlet, and E. Salathé, 2008: Has spring snowpack declined in the Washington Cascades? Hydrology and Earth System Sciences, 12(1), 193-206.

154 Knowles, N., M.D. Dettinger, and D.R. Cayan, 2006: Trends in snowfall versus rainfall in the western United States. Journal of Climate, 19(18), 4545-4559.

155 Huntington T.G., G.A. Hodgkins, B.D. Keim, and R.W. Dudley, 2004: Changes in the proportion of precipitation occurring as snow in New England (1949 to 2000). Journal of Climate, 17(13), 2626-2636.

156 Burakowski, E.A., C.P. Wake, B. Braswell, and D.P. Brown, 2008: Trends in wintertime climate in the northeastern United States: 1965–2005. Journal of Geophysical Research, 113, D20114, doi:10.1029/2008JD009870/

157 Stewart, I.T., D.R. Cayan, and M.D. Dettinger, 2004: Changes in snowmelt runoff timing in western North America under a ‘business as usual’ climate change scenario. Climatic Change, 62(1-3), 217-232.

158 Stewart, I.T., D.R. Cayan, and M.D. Dettinger, 2005: Changes toward earlier streamflow timing across western North America. Journal of Climate, 18(8), 1136-1155.

159 Rauscher, S.A., J.S. Pal, N.S. Diffenbaugh, and M.M. Benedetti, 2008: Future changes in snowmelt-driven runoff timing over the western United States. Geophysical Research Letters, 35, L16703, doi:10.1029/2008GL034424.

160 Pierce, D.W., T.P. Barnett, H.G. Hidalgo, T. Das, C. Bonfils, B.D. Santer, G. Bala, M.D. Dettinger, D.R. Cayan, A. Mirin, A.W. Wood, and T. Nozawa, 2008: Attribution of declining western U.S. snowpack to human effects. Journal of Climate, 21(23), 6425-6444.

161 Bonfils, C., B.D. Santer, D.W. Pierce, H.G. Hidalgo, G. Bala, T. Das, T.P. Barnett, D.R. Cayan, C. Doutriaux, A.W. Wood, A. Mirin, and T. Nozawa, 2008: Detection and attribution of temperature changes in the mountainous western United States. Journal of Climate, 21(23), 6404-6424.

162 U.S. Environmental Protection Agency, 2008: National Water Program Strategy: Response to Climate Change. U.S. Environmental Protection Agency, Washington, DC, 97 pp. <http://www.epa.gov/ water/climatechange/>

163 Ebi, K.L., J. Balbus, P.L. Kinney, E. Lipp, D. Mills, M.S. O’Neill, and M. Wilson, 2008: Effects of global change on human health. In: Analyses of the Effects of Global Change on Human Health and Welfare and Human Systems [Gamble, J.L. (ed.), K.L. Ebi, F.G. Sussman, and T.J. Wilbanks (authors)]. Synthesis and Assessment Product 4.6. U.S. Environmental Protection Agency, Washington, DC, pp. 39-87.

164 Field, C.B., L.D. Mortsch, M. Brklacich, D.L. Forbes, P. Kovacs, J.A. Patz, S.W. Running, and M.J. Scott, 2007: North America. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 617-652.

165 Winter, J., J.W. Harvey, O.L. Franke, and W.M. Alley, 1998: Ground Water and Surface Water: A Single Resource. USGS circular 1139. U.S. Geological Survey, Denver, CO, 79 pp. <http://pubs.usgs.gov/ circ/circ1139/>

166 Austin, J.A. and S.M. Colman, 2007: Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback. Geophysical Research Letters, 34, L06604, doi:10.1029/2006GL029021.

167 U.S. General Accounting Office, 2003: Freshwater Supply: States’ Views of How Federal Agencies Could Help Them Meet the Challenges of Expected Shortages. GAO-03-514. General Accounting Office, Washington, DC, 110 pp. <http://www.gao.gov/new.items/ d03514.pdf>

168 U.S. Environmental Protection Agency, 2002: The Clean Water and Drinking Water Infrastructure Gap Analysis. EPA-816-R-02-020. U.S. Environmental Protection Agency, Washington, DC, 50 pp. <http://www.epa.gov/safewater/gapreport.pdf>

169 National Research Council, 2004: Confronting the Nation’s Water Problems: The Role of Research. National Academies Press, Washington, DC, 310 pp.

170 Yohe, G.W., R.D. Lasco, Q.K. Ahmad, N.W. Arnell, S.J. Cohen, C. Hope, A.C. Janetos, and R.T. Perez, 2007: Perspectives on climate change and sustainability. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 811-841.

171 U.S. Bureau of Reclamation, 2005: Water 2025: Preventing Crises and Conflict in the West. U.S. Bureau of Reclamation, Washington, DC, 32 pp. Updated from USBR <http://www.usbr. gov/uc/crsp/GetSiteInfo>

172 Wilbanks, T.J., P. Romero Lankao, M. Bao, F. Berkhout, S. Cairncross, J.-P. Ceron, M. Kapshe, R. Muir-Wood, and R. Zapata- Marti, 2007: Industry, settlement and society. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 357-390.

173 Adger, W.N., S. Agrawala, M.M.Q. Mirza, C. Conde, K. O’Brien, J. Pulhin, R. Pulwarty, B. Smit, and K. Takahashi, 2007: Assessment of adaptation practices, options, constraints and capacity. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 717-743.

174 Hartmann, H.C., 2008: Decision support for water resources management. In: Uses and Limitations of Observations, Data, Forecasts and Other Projections in Decision Support for Selected Sectors and Regions. Synthesis and Assessment Product 5.1. U.S. Climate Change Science Program, Washington, DC, pp. 45-55.

175 Ruhl, J.B., 2005: Water wars, eastern style: divvying up the Apalachicola- Chattahoochee-Flint River Basin. Journal of Contemporary Water Research & Education, 131, 47-54.

176 Leitman, S., 2008: Lessons learned from transboundary management efforts in the Apalachicola-Chattahoochee-Flint Basin, USA. In: Transboundary Water Resources: A Foundation for Regional Stability in Central Asia [Moerlins, J.E., M.K. Khankhasayev, S.F. Leitman, and E.J. Makhmudov (eds.)]. Springer, Dordrecht and London, pp. 195-208.

177 Gobalet, K., P. Schulz, T. Wake, and N. Siefkin, 2004: Archaeological perspectives on Native American fisheries of California, with emphasis on steelhead and salmon. Transactions of the American Fisheries Society, 133(4), 801-833.

178 Hammersmark, C., W. Fleenor, and S. Schladow, 2005: Simulation of flood impact and habitat extent for a tidal freshwater marsh restoration. Ecological Engineering, 25(2), 137-152.

179 Kondolf, G., P. Angermeier, K. Cummins, T. Dunne, M. Healey, W. Kimmerer, P. Moyle, D. Murphy, D. Patten, S. Railsback, D. Reed, R. Spies, and R. Twiss, 2008: Projecting cumulative benefits of multiple river restoration projects: An example from the Sacramento-San Joaquin River system in California. Environmental Management, 42(6), 933-945.

180 McKee, L., N. Ganju, and D. Schoellhamer, 2006: Estimates of suspended sediment entering San Francisco Bay from the Sacramento and San Joaquin Delta, San Francisco Bay, California. Journal of Hydrology, 323(1-4), 335-352.

181 Trenham, P., H. Shaffer, and P. Moyle, 1998: Biochemical identification and assessment of population subdivision in morphologically similar native and invading smelt species (Hypomesus) in the Sacramento San Joaquin estuary, California. Transactions of the American Fisheries Society, 127(3), 417-424.

182 Vengosh, A., J. Gill, M. Davisson, and G. Hudson, 2002: A multiisotope (B, Sr, O, H, and C) and age dating (3H-3He and 14C) study of groundwater from Salinas Valley, California: hydrochemistry, dynamics, and contamination processes. Water Resources Research, 38(1), 1008, doi:10.1029/2001WR000517.

183 Haggerty, G.M., D. Tave, R. Schmidt-Petersen, and J. Stomp, 2008: Raising endangered fish in New Mexico. Southwest Hydrology, 7(4), 20-21.

184 National Research Council, 2004: Endangered and Threatened Fishes in the Klamath River Basin: Causes of Decline and Strategies for Recovery. National Academies Press, Washington, DC, 398 pp.

185 National Research Council, 2008: Hydrology, Ecology, and Fishes of the Klamath River Basin. National Academies Press, Washington, DC, 272 pp.

186 National Research Council, 2007: Colorado River Basin Water Management: Evaluating and Adjusting to Hydroclimatic Variability. National Academies Press, Washington, DC, 218 pp.

187 U.S. Bureau of Reclamation, 2007: Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lake Powell and Lake Mead: Final Environmental Impact Statement. [U.S. Bureau of Reclamation, Boulder City, NV], 4 volumes. <http://www.usbr.gov/lc/region/programs/strategies/FEIS/index. html>

188 University of Arizona, Undated: Native American Water Rights in Arizona. [Web site] <http://www.library.arizona.edu/about/librar ies/govdocs/waterdoc.html>

189 Cook, E.R., C.A. Woodhouse, C.M. Eakin, D.M. Meko, and D.W. Stahle, 2004: Long-term aridity changes in the western United States. Science, 306(5698), 1015-1018.

190 Ingram, H., D. Feldman, N. Mantua, K.L. Jacobs, D. Fort, N. Beller-Simms, and A.M. Waple, 2008: The changing context. In: Decision-Support Experiments and Evaluations Using Seasonal- to-Interannual Forecasts and Observational Data: A Focus on Water Resources [Beller-Simms, N., H. Ingram, D. Feldman, N. Mantua, K.L. Jacobs, and A.M. Waple (eds.)]. Synthesis and Assessment Product 5.3. NOAA’s National Climatic Data Center, Asheville, NC, pp. 7-28.

191 Bull, S.R., D.E. Bilello, J. Ekmann, M.J. Sale, and D.K. Schmalzer, 2007: Effects of climate change on energy production and distribution in the United States. In: Effects of Climate Change on Energy Production and Use in the United States [Wilbanks, T.J., V. Bhatt, D.E. Bilello, S.R. Bull, J. Ekmann, W.C. Horak, Y.J. Huang, M.D. Levine, M.J. Sale, D.K. Schmalzer, and M.J. Scott (eds.)]. Synthesis and Assessment Product 4.5. U.S. Climate Change Science Program, Washington, DC, pp. 45-80.

192 Hyman, R.C., J.R. Potter, M.J. Savonis, V.R. Burkett, and J.E. Tump, 2008: Why study climate change impacts on transportation? In: Impacts of Climate Change and Variability on Transportation Systems and Infrastructure: Gulf Coast Study, Phase I [Savonis, M.J., V.R. Burkett, and J.R. Potter (eds.)]. Synthesis and Assessment Product 4.7. U.S. Department of Transportation, Washington, DC, pp. 1-1 to 1F-2 [48 pp.]

193 Hatfield, J., K. Boote, P. Fay, L. Hahn, C. Izaurralde, B.A. Kimball, T. Mader, J. Morgan, D. Ort, W. Polley, A. Thomson, and D. Wolfe, 2008: Agriculture. In: The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States [Backlund, P., A. Janetos, D. Schimel, J. Hatfield, K. Boote, P. Fay, L. Hahn, C. Izaurralde, B.A. Kimball, T. Mader, J. Morgan, D. Ort, W. Polley, A. Thomson, D. Wolfe, M.G. Ryan, S.R. Archer, R. Birdsey, C. Dahm, L. Heath, J. Hicke, D. Hollinger, T. Huxman, G. Okin, R. Oren, J. Randerson, W. Schlesinger, D. Lettenmaier, D. Major, L. Poff, S. Running, L. Hansen, D. Inouye, B.P. Kelly, L. Meyerson, B. Peterson, and R. Shaw (eds.)]. Synthesis and Assessment Product 4.3. U.S. Department of Agriculture, Washington, DC, pp. 21-74.

194 Feldman, D.L., K.L. Jacobs, G. Garfin, A. Georgakakos, B. Morehouse, P. Restrepo, R. Webb, B. Yarnal, D. Basketfield, H.C. Hartmann, J. Kochendorfer, C. Rosenzweig, M. Sale, B. Udall, and C. Woodhouse, 2008: Making decision-support information useful, useable, and responsive to decision-maker needs In: Decision- Support Experiments and Evaluations Using Seasonal-to- Interannual Forecasts and Observational Data: A Focus on Water Resources [Beller-Simms, N., H. Ingram, D. Feldman, N. Mantua, K.L. Jacobs, and A.M. Waple (eds.)]. Synthesis and Assessment Product 5.3. NOAA’s National Climatic Data Center, Asheville, NC, pp. 101-140.

195 McCabe, G.J. and D.M. Wolock, 2007: Warming may create substantial water supply shortages in the Colorado River basin. Geophysical Research Letters, 34, L22708, doi:10.1029/2007GL031764.

196 Brekke, L., B. Harding, T. Piechota, B. Udall, C. Woodhouse, and D. Yates (eds.), 2007: Appendix U: Climate Technical Work Group Report: Review of science and methods for incorporating climate change information into Bureau of Reclamation’s Colorado River Basin planning studies. In: Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lake Powell and Lake Mead: Final Environmental Impact Statement. U.S. Bureau of Reclamation, Boulder City, NV, 110 pp. <http:// www.usbr.gov/lc/region/programs/strateg ... index.html>

197 U.S. Department of Energy, 2006: Energy Demands on Water Resources. Report to Congress on the Interdependency of Energy and Water. Sandia National Laboratories, Albuquerque, NM, 80 pp. <http://www.sandia.gov/energy-water/docs/121-RptToCon gress-EWwEIAcomments-FINAL.pdf>

198 California Energy Commission, 2005: California’s Water -- Energy Relationship. CEC-700-2005-011-SF. California Energy Commission, [Sacramento], 174 pp. <http://www.energy. ca.gov/2005publications/CEC-700-2005-011/CEC-700-2005-011- SF.PDF>

199 California Energy Commission, 2006: Refining Estimates of Water-related Energy Use in California. CEC-500-2006-118. California Energy Commission, [Sacramento]. <http://www.en ergy.ca.gov/2006publications/CEC-500-2006-118/CEC-500-2006- 118.PDF>

200 U.S. Energy Information Administration, 2008: Energy in Brief: What are Greenhouse Gases and How Much are Emitted by the United States? [Web site] Energy Information Administration, Washington, DC. <http://tonto.eia.doe.gov/energy_in_brief/green house_gas.cfm>

201 Wilbanks, T.J., et al., 2007: Executive summary. In: Effects of Climate Change on Energy Production and Use in the United States [Wilbanks, T.J., V. Bhatt, D.E. Bilello, S.R. Bull, J. Ekmann, W.C. Horak, Y.J. Huang, M.D. Levine, M.J. Sale, D.K. Schmalzer, and M.J. Scott (eds.)]. Synthesis and Assessment Product 4.5. U.S. Climate Change Science Program, Washington, DC, pp. x-xii.

202 From Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2003, U.S. EPA. Allocations from “Electricity & Heat” and “Industry” to end uses are WRI estimates based on energy use data from the International Energy Agency (IEA, 2005). All data is for 2003. All calculations are based on CO2 equivalents, using 100- year global warming potentials from the IPCC (1996).

203 U.S. Energy Information Administration, 2008: Annual Energy Review 2007. U.S. Department of Energy, Washington, DC, 400 pp. <http://www.eia.doe.gov/emeu/aer/pdf/aer.pdf>

204 Bhatt, V., J. Eckmann, W.C. Horak, and T.J. Wilbanks, 2007: Possible indirect effects on energy production and distribution in the United States. In: Effects of Climate Change on Energy Production and Use in the United States [Wilbanks, T.J., V. Bhatt, D.E. Bilello, S.R. Bull, J. Ekmann, W.C. Horak, Y.J. Huang, M.D. Levine, M.J. Sale, D.K. Schmalzer, and M.J. Scott (eds.)]. Synthesis and Assessment Product 4.5. U.S. Climate Change Science Program, Washington, DC, pp. 81-97.

205 Scott, M.J. and Y.J. Huang, 2007: Effects of climate change on energy use in the United States. In: Effects of Climate Change on Energy Production and Use in the United States [Wilbanks, T.J., V. Bhatt, D.E. Bilello, S.R. Bull, J. Ekmann, W.C. Horak, Y.J. Huang, M.D. Levine, M.J. Sale, D.K. Schmalzer, and M.J. Scott (eds.)]. Synthesis and Assessment Product 4.5. U.S. Climate Change Science Program, Washington, DC, pp. 8-44.

206 U.S. Department of Energy, 2008: Buildings Energy Data Book. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, [Washington, DC]. <http://buildingsdatabook. eere.energy.gov/>

207 U.S. Census Bureau, 2002: Population of States and Counties of the United States: 1790-2000. U.S. Census Bureau, Washington, DC, 226 pp. <http://www.census.gov/population/www/censusdata/hiscendata. html> See <http://www.census.gov/popest/counties/> for 2008 estimates.

208 Feldman, D.L., K.L. Jacobs, G. Garfin, A. Georgakakos, B. Morehouse, R. Webb, B. Yarnal, J. Kochendorfer, C. Rosenzweig, M. Sale, B. Udall, and C. Woodhouse, 2008: Decision-support experiments within the water resource management sector. In: Decision-Support Experiments and Evaluations Using Seasonal- to-Interannual Forecasts and Observational Data: A Focus on Water Resources [Beller-Simms, N., H. Ingram, D. Feldman, N. Mantua, K.L. Jacobs, and A.M. Waple (eds.)]. Synthesis and Assessment Product 5.3. NOAA’s National Climatic Data Center, Asheville, NC, pp. 65-100.

209 Hightower, M. and S.A. Pierce, 2008: The energy challenge. Nature, 452(7185), 285-286.

210 Wilbanks, T.J., et al., 2007: Conclusions and research priorities. In: Effects of Climate Change on Energy Production and Use in the United States [Wilbanks, T.J., V. Bhatt, D.E. Bilello, S.R. Bull, J. Ekmann, W.C. Horak, Y.J. Huang, M.D. Levine, M.J. Sale, D.K. Schmalzer, and M.J. Scott (eds.)]. Synthesis and Assessment Product 4.5. U.S. Climate Change Science Program, Washington, DC, pp. 98-108.

211 Maulbetsch, J.S. and M.N. DiFilippo, 2006: Cost and Value of Water Use at Combined Cycle Power Plants. CEC-500-2006-034. California Energy Commission, PIER Energy-Related Environmental Research. <http://www.energy.ca.gov/2006publications/CEC-500- 2006-034/CEC-500-2006-034.PDF>

212 U.S. Energy Information Administration, 2002: National Trends in Coal Transportation. [Web site] Energy Information Administration, Washington, DC. <http://www.eia.doe.gov/cneaf/coal/ctrdb/ natltrends.html>

213 NOAA’s National Climatic Data Center, 2008: Climate of 2008: Midwestern U.S. Flood Overview. [Web site] <http://www.ncdc. noaa.gov/oa/climate/research/2008/flood08.html>

214 CBO Testimony, 2005: Macroeconomic and Budgetary Effects of Hurricanes Katrina and Rita. Statement of Douglas Holtz-Easkin, Director, before the Committee on the Budget, U.S. House of Representatives. Congressional Budget Office, Washington, DC, 21 pp. <http://www.cbo.gov/doc.cfm?index=6684>

215 Potter, J.R., V.R. Burkett, and M.J. Savonis, 2008: Executive summary. In: Impacts of Climate Change and Variability on Transportation Systems and Infrastructure: Gulf Coast Study, Phase I [Savonis, M. J., V.R. Burkett, and J.R. Potter (eds.)]. Synthesis and Assessment Product 4.7. U.S. Department of Transportation, Washington, DC, pp. ES-1 to ES-10.

216 U.S. Energy Information Administration, U.S. Department of Energy [data]; assembled by Evan Mills, Lawrence Berkeley National Laboratory. Data available at <http://www.eia.doe.gov/cneaf/elec tricity/page/disturb_events.html>

217 Kafalenos, R.S., K.J. Leonard, D.M. Beagan, V.R. Burkett, B.D. Keim, A. Meyers, D.T. Hunt, R.C. Hyman, M.K. Maynard, B. Fritsche, R.H. Henk, E.J. Seymour, L.E. Olson, J.R. Potter, and M.J. Savonis, 2008: What are the implications of climate change and variability for Gulf coast transportation? In: Impacts of Climate Change and Variability on Transportation Systems and Infrastructure: Gulf Coast Study, Phase I [Savonis, M.J., V.R. Burkett, and J.R. Potter (eds.)]. Synthesis and Assessment Product 4.7. U.S. Department of Transportation, Washington, DC, pp. 4-1 to 4F-27 [104 pp.]

218 U.S. Energy Information Administration, 2008: Monthly Energy Review. U.S. Department of Energy, Energy Information Administration, Washington, DC. <http://www.eia.doe.gov/emeu/mer/ contents.html>

219 National Assessment Synthesis Team (NAST), 2001: Climate Change Impacts on the United States: The Potential Consequences of Climate Variability and Change. Cambridge University Press, Cambridge, UK, and New York, 612 pp. <http://www.usgcrp.gov/ usgcrp/Library/nationalassessment/>

220 ACIA, 2004: Impacts of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, UK, and New York, 139 pp. <http://www.acia.uaf.edu>

221 U.S. Environmental Protection Agency, 2008: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2006. USEPA 430-R- 08-005. U.S. Environmental Protection Agency, Washington, DC, 473 pp. <http://www.epa.gov/climatechange/emissions/usinvent oryreport.html>

222 National Research Council, 2008: Potential Impacts of Climate Change on U.S. Transportation. Transportation Research Board special report 290. Transportation Research Board, Washington, DC, 280 pp. <http://onlinepubs.trb.org/onlinepubs/sr/sr290.pdf>

223 Schimel, D., A. Janetos, P. Backlund, J. Hatfield, M.G. Ryan, S.R. Archer, and D. Lettenmaier, 2008: Synthesis. In: The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States [Backlund, P., A. Janetos, D. Schimel, J. Hatfield, K. Boote, P. Fay, L. Hahn, C. Izaurralde, B.A. Kimball, T. Mader, J. Morgan, D. Ort, W. Polley, A. Thomson, D. Wolfe, M.G. Ryan, S.R. Archer, R. Birdsey, C. Dahm, L. Heath, J. Hicke, D. Hollinger, T. Huxman, G. Okin, R. Oren, J. Randerson, W. Schlesinger, D. Lettenmaier, D. Major, L. Poff, S. Running, L. Hansen, D. Inouye, B.P. Kelly, L. Meyerson, B. Peterson, and R. Shaw (eds.)]. Synthesis and Assessment Product 4.3. U.S. Department of Agriculture, Washington, DC, pp. 183-193.

224 Burkett, V.R., R.C. Hyman, R. Hagelman, S.B. Hartley, M. Sheppard, T.W. Doyle, D.M. Beagan, A. Meyers, D.T. Hunt, M.K. Maynard, R.H. Henk, E.J. Seymour, L.E. Olson, J.R. Potter, and N.N. Srinivasan, 2008: Why study the Gulf Coast? In: Impacts of Climate Change and Variability on Transportation Systems and Infrastructure: Gulf Coast Study, Phase I [Savonis, M.J., V.R. Burkett, and J.R. Potter (eds.)]. Synthesis and Assessment Product 4.7. U.S. Department of Transportation, Washington, DC, pp. 2-1 to 2F-26. [66 pp.]

225 Peterson, T.C., M. McGuirk, T.G. Houston, A.H. Horvitz, and M.F. Wehner, 2008: Climate Variability and Change with Implications for Transportation. National Research Council, Washington, DC, 90 pp. <http://onlinepubs.trb.org/onlinepubs/sr/sr290Many.pdf>

226 Hay, J.E., R. Warrick, C. Cheatham, T. Manarangi-Trott, J. Konno, and P. Hartley, 2005: Climate Proofing: A Risk-based Approach to Adaptation. Asian Development Bank, Manila, The Philippines, 191 pp. <http://www.adb.org/Documents/Reports/Climate-Proofing/ default.asp>

227 OSHA, 2008: Heat stress. In: OSHA Technical Manual, Section III: Chapter 4. Occupational Safety & Health Administration, Wash ington, DC. <http://www.osha.gov/dts/osta/otm/otm_iii/otm_iii_4. html>

228 Landsea, C.W., 1993: A climatology of intense (or major) Atlantic hurricanes. Monthly Weather Review, 121(6), 1710-1713.

229 NOAA’s National Climatic Data Center, 2008: Billion Dollar U.S. Weather Disasters [Web site] <http://www.ncdc.noaa.gov/oa/re ports/billionz.html>

230 Larsen, P.H., S. Goldsmith, O. Smith, M.L. Wilson, K. Strzepek, P. Chinowsky, and B. Saylor, 2008: Estimating future costs for Alaska public infrastructure at risk from climate change. Global Environmental Change, 18(3), 442-457.
admin
Site Admin
 
Posts: 36135
Joined: Thu Aug 01, 2013 5:21 am

Re: GLOBAL CLIMATE CHANGE IMPACTS IN THE UNITED STATES -- A

Postby admin » Fri Dec 04, 2015 10:56 pm

Part 3 of 4

231 U.S. Environmental Protection Agency, 2008: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2006. USEPA 430-R- 08-005. U.S. Environmental Protection Agency, Washington, DC, 473 pp. <http://www.epa.gov/climatechange/emissions/usinvent oryreport.html>

232 National Agricultural Statistics Service, 2002: 2002 Census of Agriculture. USDA National Agricultural Statistics Service, Washington, DC. <http://www.agcensus.usda.gov/Publications/2002/ index.asp>

233 Wolfe, W., L. Ziska, C. Petzoldt, A. Seaman, L. Chase, and K. Hayhoe, 2007: Projected change in climate thresholds in the northeastern U.S.: implications for crops, pests, livestock, and farmers. Mitigation and Adaptation Strategies for Global Change, 13(5-6), 555-575.

234 Frumhoff, P.C., J.J. McCarthy, J.M. Melillo, S.C. Moser, and D.J. Wuebbles, 2007: Confronting Climate Change in the U.S. Northeast: Science, Impacts and Solutions. Synthesis report of the Northeast Climate Impacts Assessment. Union of Concerned Scientists, Cambridge, MA, 146 pp.

235 Gu, L., P.J. Hanson, W.M. Post, D.P. Kaiser, B. Yang, R. Nemani, S.G. Pallardy, and T. Meyers, 2008: The 2007 eastern U.S. spring freeze: increased cold damage in a warming world? BioScience, 58(3), 253-262.

236 Inouye, D.W., 2008: Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology, 89(2), 353-362.

237 Either hydrogen dioxide or oxygenated hydrocarbons.

238 Peet, M.M. and D.W. Wolf, 2000: Crop ecosystem responses to climate change: vegetable crops. In: Climate Change and Global Crop Productivity [Reddy, K.R. and H.F. Hodges (eds.)]. CABI Publishing, New York, and Wallingford, UK, 472 pp.

239 Bridges, D.C. (ed.), 1992: Crop Losses Due to Weeds in the United States. Weed Science Society of America, Champaign, IL, 403 pp.

240 Joyce, L.A., G.M. Blate, J.S. Littell, S.G. McNulty, C.I. Millar, S.C. Moser, R.P. Neilson, K. O’Halloran, and D.L. Peterson, 2008: National forests. In: Preliminary Review of Adaptation Options for Climate-sensitive Ecosystems and Resources. [Julius, S.H., J.M. West (eds.), J.S. Baron, B. Griffith, L.A. Joyce, P. Kareiva, B.D. Keller, M.A. Palmer, C.H. Peterson, and J.M. Scott (authors)]. Synthesis and Assessment Product 4.4. U.S. Environmental Protection Agency, Washington, DC, pp. 3-1 to 3-127.

241 Kiely, T., D. Donaldson, and A. Grube, 2004: Pesticides Industry Sales and Usage: 2000 and 2001 Market Estimates. U.S. Environmental Protection Agency, Washington, DC, 33 pp. <http://www. epa.gov/oppbead1/pestsales/>

242 Natural Resources Conservation Service, 1997: 1997 Five-Year Natural Resources Inventory. USDA Natural Resources Conservation Service, Washington, DC. <http://www.nrcs.usda.gov/technical/ NRI/1997/index.html>

243 Ryan, M.G., S.R. Archer, R. Birdsey, C. Dahm, L. Heath, J. Hicke, D. Hollinger, T. Huxman, G. Okin, R. Oren, J. Randerson, and W. Schlesinger, 2008: Land resources. In: The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States [Backlund, P., A. Janetos, D. Schimel, J. Hatfield, K. Boote, P. Fay, L. Hahn, C. Izaurralde, B.A. Kimball, T. Mader, J. Morgan, D. Ort, W. Polley, A. Thomson, D. Wolfe, M.G. Ryan, S.R. Archer, R. Birdsey, C. Dahm, L. Heath, J. Hicke, D. Hollinger, T. Huxman, G. Okin, R. Oren, J. Randerson, W. Schlesinger, D. Lettenmaier, D. Major, L. Poff, S. Running, L. Hansen, D. Inouye, B.P. Kelly, L. Meyerson, B. Peterson, and R. Shaw (eds.)]. Synthesis and Assessment Product 4.3. U.S. Department of Agriculture, Washington, DC, pp. 75-120.

244 Parmesan, C., 1996: Climate and species range. Nature, 382(6594), 765-766.

245 Hinzman, L.D., N.D. Bettez, W.R. Bolton, F.S. Chapin, M.B. Dyurgerov, C.L. Fastie, B. Griffith, R.D. Hollister, A. Hope, H.P. Huntington, A.M. Jensen, G.J. Jia, T. Jorgenson, D.L. Kane, D.R. Klein, G. Kofinas, A.H. Lynch, A.H. Lloyd, A.D. McGuire, F.E. Nelson, M. Nolan, W.C. Oechel, T.E. Osterkamp, C.H. Racine, V.E. Romanovsky, R.S. Stone, D.A. Stow, M. Sturm, C.E. Tweedie, G.L. Vourlitis, M.D. Walker, D.A. Walker, P.J. Webber, J.M. Welker, K.S. Winker, and K. Yoshikawa, 2005: Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Climatic Change, 72(3), 251-298.

246 Mimura, N., L. Nurse, R.F. McLean, J. Agard, L. Briguglio, P. Lefale, R. Payet, and G. Sem, 2007: Small islands. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 687-716.

247 Millennium Ecosystem Assessment, 2005: Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute, Washington, DC, 86 pp. <http://www.millenniumassessment.org>

248 Fischlin, A., G.F. Midgley, J.T. Price, R. Leemans, B. Gopal, C. Turley, M.D.A. Rounsevell, O.P. Dube, J. Tarazona, and A.A. Velichko, 2007: Ecosystems, their properties, goods, and services. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 211-272.

249 National Interagency Fire Center, [2008]: Total Wildland Fires and Acres (1960-2007). National Interagency Coordination Center, Boise, ID. Data at <http://www.nifc.gov/fire_info/fire_stats.htm>

250 CCSP, 2009: Case studies. In: Thresholds of Climate Change in Ecosystems [Fagre, D.B., C.W. Charles, C.D. Allen, C. Birkeland, F.S. Chapin III, P.M. Groffman, G.R. Guntenspergen, A.K. Knapp, A.D. McGuire, P.J. Mulholland, D.P.C. Peters, D.D. Roby, and G. Sugihara] Synthesis and Assessment Product 4.2. U.S. Geological Survey, Reston, VA, pp. 32-73.

251 Pounds, J.A., M.R. Bustamante, L.A. Coloma, J.A. Consuegra, M.P. L. Fogden, P.N. Foster, E. La Marca, K.L. Masters, A. Merino-Viteri, R. Puschendorf, S.R. Ron, G.A. Sánchez-Azofeifa, C.J. Still, and B.E. Young, 2006: Widespread amphibian extinctions from epidemic disease driven by global warming. Nature, 439(7073), 161-167.

252 Peterson, T.C., D.M. Anderson, S.J. Cohen, M. Cortez-Vázquez, R.J. Murnane, C. Parmesan, D. Phillips, R.S. Pulwarty, and J.M.R. Stone, 2008: Why weather and climate extremes matter. In: Weather and Climate Extremes in a Changing Climate. Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands [Karl, T.R., G.A. Meehl, C.D. Miller, S.J. Hassol, A.M. Waple, and W.L. Murray (eds.)]. Synthesis and Assessment Product 3.3. U.S. Climate Change Science Program, Washington, DC, pp. 11-34.

253 Backlund, P., D. Schimel, A. Janetos, J. Hatfield, M.G. Ryan, S.R. Archer, and D. Lettenmaier, 2008: Introduction. In: The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States [Backlund, P., A. Janetos, D. Schimel, J. Hatfield, K. Boote, P. Fay, L. Hahn, C. Izaurralde, B.A. Kimball, T. Mader, J. Morgan, D. Ort, W. Polley, A. Thomson, D. Wolfe, M.G. Ryan, S.R. Archer, R. Birdsey, C. Dahm, L. Heath, J. Hicke, D. Hollinger, T. Huxman, G. Okin, R. Oren, J. Randerson, W. Schlesinger, D. Lettenmaier, D. Major, L. Poff, S. Running, L. Hansen, D. Inouye, B.P. Kelly, L. Meyerson, B. Peterson, and R. Shaw (eds.)]. Synthesis and Assessment Product 4.3. U.S. Department of Agriculture, Washington, DC, pp. 11-20.

254 Burkett, V.R., D.A. Wilcox, R. Stottlemeyer, W. Barrow, D. Fagre, J. Baron, J. Price, J.L. Nielsen, C.D. Allen, D.L. Peterson, G. Ruggerone, and T. Doyle, 2005: Nonlinear dynamics in ecosystem response to climatic change: case studies and policy implications. Ecological Complexity, 2(4), 357-394.

255 Anderson, K.E., D.R. Cahoon, S.K. Gill, B.T. Gutierrez, E.R. Thieler, J.G. Titus, and S.J. Williams, 2009: Executive summary. In: Coastal Elevations and Sensitivity to Sea-level Rise: A Focus on the Mid-Atlantic Region [J.G. Titus (coordinating lead author), K.E. Anderson, D.R. Cahoon, D.B. Gesch, S.K. Gill, B.T. Gutierrez, E.R. Thieler, and S.J. Williams (lead authors)]. Synthesis and Assessment Product 4.1. U.S. Environmental Protection Agency, Washington, DC, pp. 1-8.

256 Park, R.A., M.S. Trehan, P.W. Mausel, and R.C. Howe, 1989: The Effects of Sea Level Rise on U.S. Coastal Wetlands. U.S. Environmental Protection Agency, Washington, DC, 55 pp.

257 Gutierrez, B.T., S.J. Williams, and E.R Thieler, 2009: Ocean coasts. In: Coastal Elevations and Sensitivity to Sea-level Rise: A Focus on the Mid-Atlantic Region [J.G. Titus (coordinating lead author), K.E. Anderson, D.R. Cahoon, D.B. Gesch, S.K. Gill, B.T. Gutierrez, E.R. Thieler, and S.J. Williams (lead authors)]. Synthesis and Assessment Product 4.1. U.S. Environmental Protection Agency, Washington, DC, pp. 43-56.

258 Monaco Declaration, 2009: Developed at the Second International Symposium on the Ocean in a High-CO2 World, Monaco, 6-9 October 2008. <http://ioc3.unesco.org/oanet/Symposium2008/Mo nacoDeclaration.pdf>

259 Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales, 2008: Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science, 320(5882), 1490-1492.

260 Beckage, B., B. Osborne, D.G. Gavin, C. Pucko, T. Siccama, and T. Perkins, 2008: A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proceedings of the National Academy of Sciences, 105(11), 4197-4202.

261 Beever, E.A., P.F. Brussard, and J. Berger, 2003: Patterns of apparent extirpation among isolated populations of pikas (Ochotona princeps) in the Great Basin. Journal of Mammology, 84(1), 37-54.

262 Krajick, K., 2004: All downhill from here? Science, 303(5664), 1600-1602.

263 Battin, J., M.W. Wiley, M.H. Ruckelshaus, R.N. Palmer, E. Korb, K.K. Bartz, and H. Imaki, 2007: Projected impacts of climate change on salmon habitat restoration. Proceedings of the National Academy of Sciences, 104(16), 6720-6725.

264 Williams, J.E., A.L. Haak, N.G. Gillespie, H.M. Neville, and W.T. Colyer, 2007: Healing Troubled Waters: Preparing Trout and Salmon Habitat for a Changing Climate. Trout Unlimited, Arlington, VA, 12 pp. <http://www.tu.org/climatechange>

265 Daily, G.C., T. Soderqvist, S. Aniyar, K. Arrow, P. Dasgupta, P.R. Ehrlich, C. Folke, A. Jansson, B.O. Jansson, N. Kautsky, S. Levin, J. Lubchenco, K.G. Maler, D. Simpson, D. Starrett, D. Tilman, and B. Walker, 2000: Ecology - The value of nature and the nature of value. Science, 289(5478), 395-396.

266 Hamilton, J.M. and R.S.J. Tol, 2004: The impact of climate change on tourism and recreation. In: Human-Induced Climate Change - An Interdisciplinary Assessment [Schlesinger, M., H.S. Kheshgi, J. Smith, F.C. de la Chesnaye, J.M. Reilly, T. Wilson, and C. Kolstad (eds.)]. Cambridge University Press, Cambridge (UK), pp. 147-155.

267 Cordell, H.K., B. McDonald, R.J. Teasley, J.C. Bergstrom, J. Martin, J. Bason, and V.R. Leeworthy, 1999: Outdoor recreation participation trends. In: Outdoor Recreation in American Life: A National Assessment of Demand and Supply Trends [Cordell, H.K. and S.M. McKinney (eds.)]. Sagamore Publishing, Champaign, IL, pp. 219-321.

268 Wall, G., 1998: Implications of global climate change for tourism and recreation in wetland areas. Climatic Change, 40(2), 371-389.

269 Titus, J.G. and M. Craghan, 2009: Shore protection and retreat. In: Coastal Elevations and Sensitivity to Sea-level Rise: A Focus on the Mid-Atlantic Region [J.G. Titus (coordinating lead author), K.E. Anderson, D.R. Cahoon, D.B. Gesch, S.K. Gill, B.T. Gutierrez, E.R. Thieler, and S.J. Williams (lead authors)]. Synthesis and Assessment Product 4.1. U.S. Environmental Protection Agency, Washington, DC, pp. 87-104.

270 Peterson, C.H., R.T. Barber, K.L. Cottingham, H.K. Lotze, C.A. Simenstad, R.R. Christian, M.F. Piehler, and J. Wilson, 2008: National estuaries. In: Preliminary Review of Adaptation Options for Climate-sensitive Ecosystems and Resources. [Julius, S.H., J.M. West (eds.), J.S. Baron, B. Griffith, L.A. Joyce, P. Kareiva, B.D. Keller, M.A. Palmer, C.H. Peterson, and J.M. Scott (authors)]. Synthesis and Assessment Product 4.4. U.S. Environmental Protection Agency, Washington, DC, pp. 7-1 to 7-108.

271 Titus, J.G. and J.E. Neumann, 2009: Implications for decisions. In: Coastal Elevations and Sensitivity to Sea-level Rise: A Focus on the Mid-Atlantic Region [J.G. Titus (coordinating lead author), K.E. Anderson, D.R. Cahoon, D.B. Gesch, S.K. Gill, B.T. Gutierrez, E.R. Thieler, and S.J. Williams (lead authors)]. Synthesis and Assessment Product 4.1. U.S. Environmental Protection Agency, Washington, DC, pp. 141-156.

272 Confalonieri, U., B. Menne, R. Akhtar, K.L. Ebi, M. Hauengue, R.S. Kovats, B. Revich, and A. Woodward, 2007: Human health. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 391-431.

273 Borden, K.A. and S.L. Cutter, 2008: Spatial patterns of natural hazards mortality in the United States. International Journal of Health Geographics, 7:64, doi:10.1186/1476-072X-7-64.

274 Gamble, J.L., K.L. Ebi, A. Grambsch, F.G. Sussman, T.J. Wilbanks, C.E. Reid, K. Hayhoe, J.V. Thomas, and C.P. Weaver, 2008: Introduction. In: Analyses of the Effects of Global Change on Human Health and Welfare and Human Systems [Gamble, J.L. (ed.), K.L. Ebi, F.G. Sussman, and T.J. Wilbanks (authors)]. Synthesis and Assessment Product 4.6. U.S. Environmental Protection Agency, Washington, DC, pp. 13-37.

275 Brikowski, T.H., Y. Lotan, and M.S. Pearle, 2008: Climate-related increase in the prevalence of urolithiasis in the United States. Proceedings of the National Academy of Sciences, 105(28), 9841-9846.

276 Semenza, J.C., 1999: Acute renal failure during heat waves. American Journal of Preventive Medicine, 17(1), 97.

277 Luber, G.E. and L.M Conklin, 2006: Heat-related deaths: United States, 1999–2003. Morbidity and Mortality Weekly Report, 55(29), 796-798.

278 Zanobetti, A. and J. Schwartz, 2008: Temperature and mortality in nine US cities. Epidemiology, 19(4), 563-570.

279 Davis, R.E., P.C. Knappenberger, P.J. Michaels, and W.M. Novicoff, 2003: Changing heat-related mortality in the United States. Environmental Health Perspectives, 111(14), 1712-1718.

280 U.S. Energy Information Administration, 2005: Table HC10.6: Air conditioning characteristics by U.S. census region, 2005. In: 2005 Residential Energy Consumption Survey. Data available at <http:// www.eia.doe.gov/emeu/recs/recs2005/hc20 ... /detailed_ tables2005.html>

281 U.S. Energy Information Administration, 2005: Table 2: Type of airconditioning equipment by census region and survey year. In: 2005 Residential Energy Consumption Survey. Data available at <http:// www.eia.doe.gov/emeu/consumptionbriefs/ ... s/recs_ac_ trends_table2.html>

282 Sheridan, S.C., A.J. Kalkstein, and L.S. Kalkstein, 2008: Trends in heat-related mortality in the United States, 1975–2004. Natural Hazards, Online First™, doi:10.1007/s11069-008-9327-2.

283 Hayhoe, K., K. Cherkauer, N. Schlegal, J. VanDorn, S. Vavrus, and D. Wuebbles, 2009: Regional climate change projections for Chicago and the Great Lakes. Journal of Great Lakes Research, in press.

284 Hayhoe, K., D. Cayan, C.B. Field, P.C. Frumhoff, E.P. Maurer, N.L. Miller, S.C. Moser, S.H. Schneider, K.N. Cahill, E.E. Cleland, L. Dale, R. Drapek, R.M. Hanemann, L.S. Kalkstein, J. Lenihan, C.K. Lunch, R.P. Neilson, S.C. Sheridan, and J.H. Verville, 2004: Emissions pathways, climate change, and impacts on California. Proceedings of the National Academy of Sciences, 101(34), 12422-12427.

285 Vavrus, S. and J. van Dorn, 2008: Projected future temrperature and precipitation extremes in Chicago. Journal of Great Lakes Research, in press.

286 Lemmen, D.S. and F.J. Warren (eds.), 2004: Climate Change Impacts and Adaptation: A Canadian Perspective. Climate Change Impacts and Adaptation Program, Natural Resources Canada, Ottawa, ON, 174 pp. <http://adaptation.nrcan.gc.ca/perspective/ pdf/report_e.pdf>

287 Ebi, K.L., J. Smith, I. Burton, and J. Scheraga, 2006: Some lessons learned from public health on the process of adaptation. Mitigation and Adaptation Strategies for Global Change, 11(3), 607-620.

288 Ebi, K.L., T.J. Teisberg, L.S. Kalkstein, L. Robinson, and R.F. Weiher, 2004: Heat watch/warning systems save lives: estimated costs and benefits for Philadelphia 1995-98. Bulletin of the American Meteorological Society, 85(8), 1067-1073.

289 Medina-Ramon, M. and J. Schwartz, 2007: Temperature, temperature extremes, and mortality: a study of acclimatisation and effect modification in 50 U.S. cities. Occupational and Environmental Medicine, 64(12), 827-833.

290 U.S. Environmental Protection Agency, 2008: National Air Quality: Status and Trends through 2007. U.S. EPA Air Quality Assessment Division, Research Triangle Park, NC, 48 pp. <http://www. epa.gov/airtrends/2008/index.html>

291 Tao, Z., A. Williams, H.-C. Huang, M. Caughey, and X.-Z. Liang, 2007: Sensitivity of U.S. surface ozone to future emissions and climate changes. Geophysical Research Letters, 34, L08811, doi:10.1029/2007GL029455.

292 California Air Resources Board, 2007: Recent Research Findings: Health Effects of Particulate Matter and Ozone Air Pollution. [Online fact sheet] California Air Resources Board, [Sacramento], 7 pp. <http://www.arb.ca.gov/research/health/fs/pm_ozone-fs.pdf>

293 California Climate Action Team, 2006: Climate Action Team Report to Governor Schwarzenegger and the Legislature. California Environmental Protection Agency, Sacramento, 107 pp. <http:// www.climatechange.ca.gov/climate_action ... orts/index. html>

294 Westerling A.L., H.G. Hidalgo, D.R. Cayan, and T.W. Swetnam, 2006: Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313(5789), 940-943.

295 Rhode Island Public Transit Authority, Undated: Air Quality Alert Days Program. [Web site] <http://www.ripta.com/content259. html>

296 Friedman, M.S., K.E. Powell, L. Hutwagner, L.M. Graham, and W.G. Teague, 2001: Impact of changes in transportation and commuting behaviors during the 1996 Summer Olympic Games in Atlanta on air quality and childhood asthma. Journal of the American Medical Association, 285(7), 897-905.

297 Wuebbles, D.J., H. Lei, and J.-T. Lin, 2007: Intercontinental transport of aerosols and photochemical oxidants from Asia and its consequences. Environmental Pollution, 150, 65-84.

298 Bell, M.L., R. Goldberg, C. Hogrefe, P. Kinney, K. Knowlton, B. Lynn, J. Rosenthal, C. Rosenzweig, and J.A. Patz, 2007: Climate change, ambient ozone, and health in 50 U.S. cities. Climatic Change, 82(1-2), 61-76.

299 U.S. Environmental Protection Agency, 2008: National Pollutant Discharge Elimination System (NPDES) Combined Sewer Overflows Demographics. [Web site] <http://cfpub.epa.gov/npdes/ cso/demo.cfm?program_id=5>

300 Tibbetts, J., 2005: Combined sewer systems: down, dirty, and out of date. Environmental Health Perspectives, 113(7), A464-A467.

301 U.S. Environmental Protection Agency, 2008: Clean Watersheds Needs Survey 2004: Report to Congress. U.S. Environmental Protection Agency, Washington, DC. <http://www.epa.gov/ cwns/2004rtc/cwns2004rtc.pdf>

302 Patz, J.A., S.J. Vavrus, C.K. Uejio, and S.L. McClellan, 2008: Climate change and waterborne disease risk in the Great Lakes region of the U.S. American Journal of Preventive Medicine, 35(5), 451-458.

303 Centers for Disease Control and Prevention, 2009: West Nile Virus: Statistics, Surveillance, and Control. [Web site] <http://www.cdc. gov/ncidod/dvbid/westnile/surv&control.htm>

304 Kilpatrick, A.M., M.A. Meola, R.M. Moudy, and L.D. Kramer, 2008: Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathogens, 4(6), e1000092. doi:10.1371/journal.ppat.1000092

305 Sussman, F.G., M.L. Cropper, H. Galbraith, D. Godschalk, J. Loomis, G. Luber, M. McGeehin, J.E. Neumann, W.D. Shaw, A. Vedlitz, and S. Zahran, 2008: Effects of global change on human welfare. In: Analyses of the Effects of Global Change on Human Health and Welfare and Human Systems [Gamble, J.L. (ed.), K.L. Ebi, F.G. Sussman, and T.J. Wilbanks (authors)]. Synthesis and Assessment Product 4.6. U.S. Environmental Protection Agency, Washington, DC, pp. 111-168.

306 Smith, J.B. and D. Tirpak (eds.), 1989: The Potential Effects of Global Climate Change on the United States U.S. Environmental Protection Agency, Washington, DC, 413 pp.

307 Ziska, L.H. and F.A. Caulfield, 2000: Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia L.), a known allergy-inducing species: implications for public health. Australian Journal of Plant Physiology, 27(10), 893-898.

308 Mohan J.E., L.H. Ziska, W.H. Schlesinger, R.B. Thomas, R.C. Sicher, K. George, and J.S. Clark, 2006: Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2. Proceedings of the National Academy of Sciences, 103(24), 9086-9089.

309 Hunt, R., D.W. Hand, M.A. Hannah, and A.M. Neal, 1991: Response to CO2 enrichment in 27 herbaceous species. Functional Ecology, 5(3), 410-421.

310 Ziska, L.H., 2003: Evaluation of the growth response of six invasive species to past, present and future atmospheric carbon dioxide. Journal of Experimental Botany, 54(381), 395-404.

311 CDC, 2007: 2007 National Diabetes Fact Sheet. Centers for Disease Control and Prevention, Atlanta, GA, 14 pp. <http://www. cdc.gov/diabetes/pubs/factsheet07.htm>

312 Patz, J.A., H.K. Gibbs, J.A. Foley, J.V. Rogers, and K.R. Smith, 2007: Climate change and global health: quantifying a growing ethical crisis. EcoHealth, 4(4), 397-405.

313 Wilbanks, T.J., P. Kirshen, D. Quattrochi, P. Romero-Lankao, C. Rosenzweig, M. Ruth, W. Solecki, J. Tarr, P. Larsen, and B. Stone, 2008: Effects of global change on human settlements. In: Analyses of the Effects of Global Change on Human Health and Welfare and Human Systems [Gamble, J.L. (ed.), K.L. Ebi, F.G. Sussman, and T.J. Wilbanks (authors)]. Synthesis and Assessment Product 4.6. U.S. Environmental Protection Agency, Washington, DC, pp. 89-109.

314 U.S. Census Bureau, 2005: Domestic Net Migration in the United States: 2000 to 2004: Population Estimates and Projections. <http://www.census.gov/prod/2006pubs/p25-1135.pdf>

315 U.S. General Accounting Office, 2003: Alaska Native Villages: Most Are Affected by Flooding and Erosion, but Few Qualify for Federal Assistance. GAO-04-142. U.S. General Accounting Office, Washington, DC, 82 pp. <http://purl.access.gpo.gov/GPO/LPS42077>

316 Gamble, J.L., K.L. Ebi, F.G. Sussman, T.J. Wilbanks, C. Reid, J.V. Thomas, and C.P. Weaver, 2008: Common themes and research recommendations. In: Analyses of the Effects of Global Change on Human Health and Welfare and Human Systems [Gamble, J.L. (ed.), K.L. Ebi, F.G. Sussman, and T.J. Wilbanks (authors)]. Synthesis and Assessment Product 4.6. U.S. Environmental Protection Agency, Washington, DC, pp. 169-176.

317 United States Conference of Mayors, 2005: U.S. Conference of Mayors Climate Protection Agreement, as endorsed by the 73rd Annual U.S. Conference of Mayors meeting, Chicago, 2005. <http:// usmayors.org/climateprotection/agreement.htm>

318 Semenza, J.C., J.E. McCullough, W.D. Flanders, M.A. McGeehin, and J.R. Lumpkin, 1999: Excess hospital admissions during the July 1995 heat wave in Chicago. American Journal of Preventive Medicine, 16(4), 269-277.

319 Borden, K.A., M.C. Schmidtlein, C.T. Emrich, W.W. Piegorsch, and S.L. Cutter, 2007: Vulnerability of U.S. cities to environmental hazards. Journal of Homeland Security and Emergency Management, 4(2), article 5. <http://www.bepress.com/jhsem/vol4/iss2/5>

320 van Kamp, I., K. Leidelmeijer, G. Marsman, and A. de Hollander, 2003: Urban environmental quality and human well-being: towards a conceptual framework and demarcation of concepts; a literature study. Landscape and Urban Planning, 65(1-2), 5-18.

321 Grimmond, S., 2007: Urbanization and global environmental change: local effects of urban warming. Geographical Journal, 173(1), 83-88.

322 Anderson, C.A., 2001: Heat and violence. Current Directions in Psychological Science, 10(1), 33-38.

323 Anderson, C.A., B.J. Bushman, and R.W. Groom, 1997: Hot years and serious and deadly assault: empirical test of the heat hypothesis. Journal of Personality and Social Psychology, 73(6), 1213-1223.

324 Milly, P.C.D., R.T. Wetherald, K.A. Dunne, and T.L. Delworth, 2002: Increasing risk of great floods in a changing climate. Nature, 415(6871), 514-517.

325 Miller, N.L., K. Hayhoe, J. Jin, and M. Auffhammer, 2008: Climate, extreme heat, and electricity demand in California. Journal of Applied Meteorology and Climatology, 47(6), 1834-1844.

326 Wang, J.X.L. and J.K. Angell, 1999: Air Stagnation Climatology for the United States (1948-1998). NOAA/Air Resources Laboratory atlas no.1. NOAA Air Resources Laboratory, Silver Spring, MD, 74 pp.

327 Riebsame, W.E., S.A. Changnon Jr., and T.R. Karl, 1991: Drought and Natural Resources Management in the United States: Impacts and Implications of the 1987–89 Drought. Westview Press, Boulder, CO, 174 pp.

328 NOAA’s National Climatic Data Center, 2009: NCDC Climate Monitoring: U.S. Records [Web site] <http://www.ncdc.noaa.gov/ oa/climate/research/records/>

329 NOAA’s National Climatic Data Center, 2009: U.S. Percent Area Wet or Dry. [Web site] <http://www.ncdc.noaa.gov/img/climate/ research/2008/ann/Reg110_wet-dry_bar01001208-mod_pg.gif>

330 Leung L.R. and W.I. Gustafson Jr., 2005: Potential regional climate change and implications to U.S. air quality. Geophysical Research Letters, 32, L16711, doi:10.1029/2005GL022911.

331 Several U.S. Department of Energy reports document the increase in electricity demand to provide air-conditioning in hotter summers in many regions of the country: Chapter 2: Carbon dioxide emissions. In: Emissions of Greenhouse Gases in the United States 2002. Report released 2004. <http://www.eia.doe.gov/oiaf/1605/ar chive/gg03rpt/index.html>; South Atlantic Household Electricity Report. Release date: 2006. <http://www.eia.doe.gov/emeu/reps/ enduse/er01_so-atl.html>; South Central Appliance Report 2001. Updated 2005. <http://www.eia.doe.gov/emeu/reps/appli/w_s_c. html>

332 CCSP, 2007: Effects of Climate Change on Energy Production and Use in the United States. [Wilbanks, T.J., V. Bhatt, D.E. Bilello, S.R. Bull, J. Ekmann, W.C. Horak, Y.J. Huang, M.D. Levine, M.J. Sale, D.K. Schmalzer, and M.J. Scott (eds.)]. Synthesis and Assessment Product 4.5. U.S. Department of Energy, Office of Biological & Environmental Research, Washington, DC, 160 pp. See chapters 2 and 3.

333 Daily data were used for both air stagnation and heat waves: 1. Heat waves: • The GHCN-Daily dataset from NCDC was used <http://www. ncdc.noaa.gov/oa/climate/ghcn-daily/> • Data from 979 U.S. stations having long periods of record and high quality. • At each station, a day was considered hot if the maximum temperature for that day was at or above the 90% of daily maximum temperatures at that station. 2. Air stagnation: • For each day in summer and at each air-stagnation grid point, it was determined if that location had stagnant air: ◦ The stagnation index was formulated by Wang, J.X.L. and J.K. Angell, 1999: Air Stagnation Climatology for the United States (1948-1998). NOAA/Air Resources Laboratory atlas no.1 NOAA Air Resources Laboratory, Silver Spring, MD, 74 pp. <http://www. arl.noaa.gov/documents/reports/atlas.pdf> ◦ Operational implementation of this index is described at <http://www.ncdc.noaa.gov/oa/climate/research/stagnation/index. php> Note: Although Wang and Angell used a criteria of four day stagnation periods, single stagnation days were used for this analysis. 3. For each location in the air stagnation grid, the nearest station (of the aforementioned 979 U.S. stations) was used to determine the coincidence of summer days having stagnant air and excessive heat as a percentage of the number of days having excessive heat.

334 Solecki, W.D. and C. Rosenzweig, 2006: Climate change and the city: observations from metropolitan New York. In: Cities and Environmental Change [Bai, X. (ed.)]. Yale University Press, New York.

335 Rosenzweig, C. and W. Solecki (eds.), 2001: Climate Change and a Global City: The Potential Consequences of Climate Variability and Change – Metro East Coast. Columbia Earth Institute, New York. <http://metroeast_climate.ciesin.columbia.edu/>

336 Kirshen, P., M. Ruth, W. Anderson, T.R. Lakshmanan, S. Chapra, W. Chudyk, L. Edgers, D. Gute, M. Sanayei, and R. Vogel, 2004: Climate’s Long-term Impacts on Metro Boston (CLIMB) Final Report. Civil and Environmental Engineering Department, Tufts University, 165 pp. <http://www.clf.org/uploadedFiles/CLIMB_ Final_Report.pdf>

337 Grimm, N.B., S.H. Faeth, N.E. Golubiewski, C.L. Redman, J. Wu, X. Bai, and J.M. Briggs, 2008: Global change and the ecology of cities. Science, 319(5864), 756-760.

338 Kuo, F.E. and W.C. Sullivan, 2001: Environment and crime in the inner city: Does vegetation reduce crime? Environment and Behavior, 33(3), 343-367.

339 Julius, S.H., J.M. West, G. Blate, J.S. Baron, B. Griffith, L.A. Joyce, P. Kareiva, B.D. Keller, M. Palmer, C. Peterson, and J.M. Scott, 2008: Executive summary. In: Preliminary Review of Adaptation Options for Climate-sensitive Ecosystems and Resources [Julius, S.H. and J.M. West (eds.), J.S. Baron, B. Griffith, L.A. Joyce, P. Kareiva, B.D. Keller, M.A. Palmer, C.H. Peterson, and J.M. Scott (authors)]. Synthesis and Assessment Product 4.4. U.S. Environmental Protection Agency, Washington, DC, pp. 1-1 to 1-6.

340 Baker, L.A., A.J. Brazel, N. Selover, C. Martin, N. McIntyre, F.R. Steiner, A. Nelson, and L. Musacchio, 2002: Urbanization and warming of Phoenix (Arizona, USA): impacts, feedbacks, and mitigation. Urban Ecosystems, 6(3), 183-203.

341 LoVecchio, F., J.S. Stapczynski, J. Hill, A.F. Haffer, J.A. Skindlov, D. Engelthaler, C. Mrela, G.E. Luber, M. Straetemans, and Z. Duprey, 2005: Heat-related mortality – Arizona, 1993-2002, and United States, 1979-2002. Morbidity and Mortality Weekly Report, 54(25), 628-630.

342 Scott, D., J. Dawson, and B. Jones, 2008: Climate change vulnerability of the US Northeast winter recreation–tourism sector. Mitigation and Adaptation Strategies for Global Change, 13(5-6), 577-596.

343 Bin, O., C. Dumas, B. Poulter, and J. Whitehead, 2007: Measuring the Impacts of Climate Change on North Carolina Coastal Resources. National Commission on Energy Policy, Washington, DC, 91 pp. <http://econ.appstate.edu/climate/>

344 Mills, E., 2005: Insurance in a climate of change. Science, 309(5737), 1040-1044.

345 Adapted from U.S. Government Accountability Office, 2007: Climate Change: Financial Risks to Federal and Private Insurers in Coming Decades are Potentially Significant. U.S. Government Accountability Office, Washington, DC, 68 pp. <http://purl.access. gpo.gov/GPO/LPS89701> Data shown are not adjusted for inflation.

346 Pielke Jr., R.A., J. Gratz, C.W. Landsea, D. Collins, M. Saunders, and R. Musulin, 2008: Normalized hurricane damages in the United States: 1900-2005. Natural Hazards Review, 9(1), 29-42.

347 Rosenzweig, C., G. Casassa, D.J. Karoly, A. Imeson, C. Liu, A. Menzel, S. Rawlins, T.L. Root, B. Seguin, and P. Tryjanowski, 2007: Assessment of observed changes and responses in natural and managed systems. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson, (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 79-131.

348 Pielke Jr., R.A., 2005: Response to: “Attribution of Disaster Losses” by E. Mills. Science, 310(5754), 1615.

349 Mills, E., 2009: A global review of insurance industry responses to climate change. The Geneva Papers on Risk and Insurance–Issues and Practice, in press.

350 Meehl, G.A. and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305(5686), 994-997.

351 Mills, E., 2006: Synergisms between climate change mitigation and adaptation: an insurance perspective. Mitigation and Adaptation Strategies for Global Change, 12(5), 809-842.

352 U.S. Government Accountability Office, 2007 [data]; assembled by Evan Mills, Lawrence Berkeley National Laboratory.

353 Reeve, N. and R. Toumi, 1999: Lightning activity as an indicator of climate change. Quarterly Journal of the Royal Meteorological Society, 125(555), 893-903.

354 Price, C. and D. Rind, 1994: Possible implications of global climate change on global lightning distributions and frequencies. Journal of Geophysical Research, 99(D5), 10823-10831.

355 Ross, C., E. Mills, and S. Hecht, 2007: Limiting liability in the greenhouse: insurance risk-management in the context of global climate change. Stanford Environmental Law Journal and Stanford Journal of International Law, Symposium on Climate Change Risk, 26A/43A, 251-334.

356 Nutter, F.W., 1996: Insurance and the natural sciences: partners in the public interest. Research Review: Journal of the Society of Insurance Research, Fall, 15-19.

357 Federal Emergency Management Agency, 2008: Emergency Management Institute. [Web site] <http://training.fema.gov/EMIWeb/ CRS/>

358 Bernstein, L., J. Roy, K.C. Delhotal, J. Harnisch, R. Matsuhashi, L. Price, K. Tanaka, E. Worrell, F. Yamba, and Z. Fengqi, 2007: Industry. In: Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Metz, B., O.R. Davidson, P.R. Bosch, R. Dave, and L.A. Meyer (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 447-496.

359 Hayhoe, K., C.P. Wake, B. Anderson, X.-Z. Liang, E. Maurer, J. Zhu, J. Bradbury, A. DeGaetano, A. Hertel, and D. Wuebbles, 2008: Regional climate change projections for the northeast U.S. Mitigation and Adaptation Strategies for Global Change, 13(5-6), 425-436.

360 New York City Department of Health and Mental Hygiene, 2006: Deaths associated with heat waves in 2006. In: NYC Vital Signs: Investigation Report, Special Report. Department of Health and Mental Hygiene, New York, 4 pp. <http://www.nyc.gov/html/doh/ downloads/pdf/survey/survey-2006heatdeaths.pdf>

361 Kunkel, K.E., H.-C. Huang, X.-Z. Liang, J.-T. Lin, D. Wuebbles, Z. Tao, A. Williams, M. Caughey, J. Zhu, and K. Hayhoe, 2008: Sensitivity of future ozone concentrations in the northeast U.S. to regional climate change. Mitigation and Adaptation Strategies for Global Change, 13(5-6), 597-606.

362 Hauagge, R. and J.N. Cummins, 1991: Phenotypic variation of length of bud dormancy in apple cultivars and related malus species. Journal of the American Society for Horticultural Science, 116(1), 100-106.

363 DeMoranville, C., 2007: Personal communication from May 29, 2008. Experts at the University of Massachusetts Cranberry Station estimate cranberry chilling requirements to be around 1,200-1,400 hours, but they advise growers to seek 1,500 hours to avoid crop failure. There are 4-5 commonly grown cultivars but no low-chill varieties. Dr. Carolyn DeMoranville is the director of the UMass Cranberry Station, a research and extension center of UMass-Amherst.

364 Iverson, L., A. Prasad, and S. Matthews, 2008: Potential changes in suitable habitat for 134 tree species in the northeastern United States. Mitigation and Adaptation Strategies for Global Change, 13(5-6), 487-516.

365 U.S. Department of Agriculture (USDA) National Agriculture Statistics Service (NASS), 2002: Statistics by State. [Web site] <http://www.nass.usda.gov/Statistics_by_State/>

366 St. Pierre, N.R., B. Cobanov, and G. Schnitkey, 2003: Economic losses from heat stress by U.S. livestock industries. Journal of Dairy Science, 86(E Sup), E52- E77.

367 Gornitz, V., S. Couch, and E.K. Hartig, 2001: Impacts of sea level rise in the New York City metropolitan area. Global and Planetary Change, 32(1), 61-88.

368 AIR Worldwide Corporation, 2008: The Coastline at Risk: 2008 Update to the Estimated Insured Value of U.S. Coastal Properties. AIR Worldwide Corporation, Boston, MA, 3 pp. <http://www.airworldwide. com/download.aspx?c=388&id=15836>

369 Kirshen, P., C. Watson, E. Douglas, A. Gontz, J. Lee, and Y. Tian, 2008: Coastal flooding in the northeastern United States due to climate change. Mitigation and Adaptation Strategies for Global Change, 13(5-6), 437-451.

370 Bowman, M., D. Hill, F. Buonaiuto, B. Colle, R. Flood, R. Wilson, R. Hunter, and J. Wang, 2008: Threats and responses associated with rapid climate change in metropolitan New York. In: Sudden and Disruptive Climate Change: Exploring the Real Risks and How We Can Avoid Them. [MacCracken, M.C., F. Moore, and J.C. Topping Jr. (eds.)]. Earthscan, London and Sterling, VA, pp. 119- 142.

371 Titus, J.G., 2009: Ongoing adaptation. In: Coastal Elevations and Sensitivity to Sea-level Rise: A Focus on the Mid-Atlantic Region [J.G. Titus (coordinating lead author), K.E. Anderson, D.R. Cahoon, D.B. Gesch, S.K. Gill, B.T. Gutierrez, E.R. Thieler, and S.J. Williams (lead authors)]. Synthesis and Assessment Product 4.1. U.S. Environmental Protection Agency, Washington, DC, pp. 157-162.

372 International Snowmobile Manufacturers Association, 2006: International Snowmobile Industry Facts and Figures. [Web site] <http://www.snowmobile.org/pr_snowfacts.asp>

373 Northeast Climate Impact Assessment (NECIA), 2006: Climate Change in the U.S. Northeast: A Report of the Northeast Climate Impacts Assessment. Union of Concerned Scientists, Cambridge, MA, 35 pp.

374 Atlantic States Marine Fisheries Commission, 2005: American Lobster. [Web site] <http://www.asmfc.org/americanLobster.htm>

375 Fogarty, M.J., 1995: Populations, fisheries, and management. In: The Biology of the American Lobster Homarus americanus. [Factor, J.R. (ed.)]. Academic Press, San Diego, CA, pp. 111-137.

376 Glenn, R.P. and T.L. Pugh, 2006: Epizootic shell disease in American lobster (Homarus americanus) in Massachusetts coastal waters: interactions of temperature, maturity, and intermolt duration. Journal of Crustacean Biology, 26(4), 639-645.

377 Fogarty, M., L. Incze, K. Hayhoe, D. Mountain, and J. Manning, 2008: Potential climate change impacts on Atlantic cod (Gadus morhua) off the northeastern United States. Mitigation and Adaptation Strategies for Global Change, 13(5-6), 453-466.

378 Dutil, J.-D. and K. Brander, 2003: Comparing productivity of North Atlantic cod (Gadus morhua) stocks and limits to growth production. Fisheries Oceanography, 12(4-5), 502-512.

379 Drinkwater, K.F., 2005: The response of Atlantic cod (Gadus morhua) to future climate change. ICES Journal of Marine Science, 62(7), 1327-1337.

380 Karl, T.R. and R.W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bulletin of the American Metrological Society, 79(2), 231-241.

381 Keim, B.D., 1997: Preliminary analysis of the temporal patterns of heavy rainfall across the southeastern United States. Professional Geographer, 49(1), 94-104.

382 Observed changes in precipitation for the Southeast were calculated from the US Historical Climatology Network Version 2. See Menne, M.J., C.N. Williams, and R.S. Vose, 2009: The United States Historical Climatology Network Monthly Temperature Data - Version 2. Bulletin of the American Meteorological Society, Early online release, 25 February 2009, doi:10.1175/2008BAMS2613.1

383 Temperature: Menne, M.J., C.N. Williams, and R.S. Vose, 2009: The United States Historical Climatology Network Monthly Temperature Data - Version 2. Bulletin of the American Meteorological Society, Early online release, 25 February 2009, doi:10.1175/2008BAMS2613.1 Precipitation: NOAA’s National Climatic Data Center, 2008: The USHCN Version 2 Serial Monthly Dataset. [Web site] <http://www.ncdc. noaa.gov/oa/climate/research/ushcn/>

384 Hoyos, C.D., P.A. Agudelo, P.J. Webster, and J.A. Curry, 2006: Deconvolution of the factors contributing to the increase in global hurricane intensity. Science, 312(577), 94-97.

385 Mann, M.E. and K.A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. EOS Transactions of the American Geophysical Union, 87(24), 233, 244.

386 Trenberth, K.E. and D.J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophysical Research Letters, 33, L12704, doi:10.1029/2006GL026894.

387 Webster, P.J., G.J. Holland, J.A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309(5742), 1844-1846.

388 Komar, P.D. and J.C. Allan, 2007: Higher waves along U.S. East Coast linked to hurricanes. EOS Transactions of the American Geophysical Union, 88(30), 301.

389 Change calculated from daily minimum temperatures from NCDC’s Global Historical Climatology Network - Daily data set. <http:// www.ncdc.noaa.gov/oa/climate/ghcn-daily/>

390 Nicholls, R.J., P.P. Wong, V.R. Burkett, J.O. Codignotto, J.E. Hay, R.F. McLean, S. Ragoonaden, and C.D. Woodroffe, 2007: Coastal systems and low-lying areas. In: Climate Change 2007: Impacts, Adaptations and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson (eds.)]. Cambridge University Press, Cambridge, UK, and New York, pp. 316-356.

391 Boyles, S., 2008: Heat Stress and Beef Cattle. Ohio State University Extension Service. <http://beef.osu.edu/library/heat.html>

392 Convention on Biological Diversity, 2006: Guidance for Promoting Synergy Among Activities Addressing Biological Diversity, Desertification, Land Degradation and Climate Change. CBD technical series 25. Secretariat of the Convention on Biological Diversity, Montreal, Canada, 43 pp. <http://www.biodiv.org/doc/public ations/cbd-ts-25.pdf>

393 Burkett, V., 2008: The northern Gulf of Mexico coast: human development patterns, declining ecosystems, and escalating vulnerability to storms and sea level rise. In: Sudden and Disruptive Climate Change: Exploring the Real Risks and How We Can Avoid Them. [MacCracken, M.C., F. Moore, and J.C. Topping (eds.)]. Earthscan Publications, London [UK], and Sterling, VA, pp. 101-118.

394 Twilley, R.R., E. Barron, H.L. Gholz, M.A. Harwell, R.L. Miller, D.J. Reed, J.B. Rose, E. Siemann, R.G. Welzel, and R.J. Zimmerman, 2001: Confronting Climate Change in the Gulf Coast Region: Prospects for Sustaining Our Ecological Heritage. Union of Concerned Scientists, Cambridge, MA, and Ecological Society of America, Washington, DC, 82 pp.

395 USGS, photos and images: Photos on the left: Tihansky, A.B., 2005: Before-and-after aerial photographs show coastal impacts of Hurricane Katrina. Sound Waves, September. <http://soundwaves.usgs.gov/2005/09/fieldwork2.html> Images on the right: Adapted from Fauver, L., 2007: Predicting flooding and coastal hazards: USGS hydrologists and geologists team up at the National Hurricane Conference to highlight data collection. Sounds Waves, June. <http://soundwaves.usgs.gov/2007/06/meetings.html>

396 Barras, J.A., 2006: Land Area Change in Coastal Louisiana After the 2005 Hurricanes: A Series of Three Maps. U.S. Geological Survey open-file report 2006-1274. <http://pubs.usgs.gov/ of/2006/1274>

397 Main Development Region of the Atlantic Ocean is defined in: Bell, G.D., E. Blake, C.W. Landsea, S.B. Goldenberg, R. Pasch, and T. Kimberlain, 2008: Tropical cyclones: Atlantic basin. In: Chapter 4: The Tropics, of State of the Climate in 2007 [Levinson, D.H. and J.H. Lawrimore (eds.)]. Bulletin of the American Meteorological Society, 89(Supplement), S68-S71.

398 Williams, K.L., K.C. Ewel, R.P. Stumpf, F.E. Putz, and T.W. Workman, 1999: Sea-level rise and coastal forest retreat on the west coast of Florida. Ecology, 80(6), 2045-2063.

399 McNulty, S.G., J.M. Vose, and W.T. Swank, 1996: Potential climate change affects on loblolly pine productivity and hydrology across the southern United States. Ambio, 25(7), 449-453.

400 Zimmerman, R.J., T.J. Minello, and L.P. Rozas, 2002: Salt marsh linkages to productivity of penaeid shrimps and blue crabs in the northern Gulf of Mexico. In: Concepts and Controversies in Tidal Marsh Ecology [Weinstein, M.P. and D.A. Kreeger (eds.)]. Kluwer, Dordrecht and Boston, pp. 293-314.
admin
Site Admin
 
Posts: 36135
Joined: Thu Aug 01, 2013 5:21 am

PreviousNext

Return to Planet on Fire

Who is online

Users browsing this forum: No registered users and 1 guest