U.S. government gave $3.7 million grant to Wuhan lab at cent

Re: U.S. government gave $3.7 million grant to Wuhan lab at

Postby admin » Sun Aug 02, 2020 2:52 am

Part 1 of 2

Is there a Role for the States Parties to the BWC in Oversight of Lab-created Potential Pandemic Pathogens?
by Lynn C. Klotz, PhD
Senior Science Fellow
Center for Arms Control and Non-proliferation
Scientists Working Group on Biological and Chemical Security http://armscontrolcenter.org/issue-cent ... l-weapons/

NOTICE: THIS WORK MAY BE PROTECTED BY COPYRIGHT

YOU ARE REQUIRED TO READ THE COPYRIGHT NOTICE AT THIS LINK BEFORE YOU READ THE FOLLOWING WORK, THAT IS AVAILABLE SOLELY FOR PRIVATE STUDY, SCHOLARSHIP OR RESEARCH PURSUANT TO 17 U.S.C. SECTION 107 AND 108. IN THE EVENT THAT THE LIBRARY DETERMINES THAT UNLAWFUL COPYING OF THIS WORK HAS OCCURRED, THE LIBRARY HAS THE RIGHT TO BLOCK THE I.P. ADDRESS AT WHICH THE UNLAWFUL COPYING APPEARED TO HAVE OCCURRED. THANK YOU FOR RESPECTING THE RIGHTS OF COPYRIGHT OWNERS.


Summary

Research by Ron Fouchier and Yoshihiro Kawaoka marked the beginning of a “Research Enterprise” creating mammalian-airborne-transmissible highly-pathogenic avian-influenza viruses. For the sake of brevity, they will be called matHPAI. At present, likely more than ten laboratories are creating or researching matHPAI live viruses. While most of our concern has focused on matHPAI, the recent de novo creation of horsepox virus, an orthopoxvirus related to smallpox virus, is also of highly worrisome.

Both these viruses are examples of lab-created potential pandemic pathogens (PPPs), which bring up questions reflecting our concerns: Should details of this dual use research be published? Could lab-created PPPs be accidentally released from a laboratory and seed a human pandemic? Could they be employed as biological weapons?

The probability of accidental release into the community from one of the laboratories in the matHPAI Research Enterprise is uncomfortably high. For these and other lab-created PPPs, just one or a few laboratory-infected researchers could seed an outbreak or a pandemic. Concern over a pandemic from a Research Enterprise laboratory release should rival our grave concern over a natural pandemic as the likelihood of both are similar. Furthermore, a laboratory worker with hostile intent could introduce a PPP into the community.


This is not a problem for future consideration, it is upon us now. There is urgent need for international oversight and regulation of this research.

The BWC States Parties may not believe it to be within the BWC mandate to oversee academic research whose goal is public health. However, if the Parties decide this is within its mandate under Article XII of the BWC, it could speed up the enactment of guidelines and regulations. At the very least, the BWC Parties could and should be the catalyst to launch discussions for a different international treaty on oversight and regulation of this dangerous research, perhaps even banning some research. In the meantime, since enacting new treaties is an uncertain and long process, the BWC Parties should work to pass legislation in their own nations.

Background and Commentary

In 2012, Fouchier published1 the creation of mammalian aerosol-transmissible H5N1 avian influenza virus (matH5N1). This virus is responsible for bird flu outbreaks in Asia, and it kills 60% of poultry workers who become infected through close contact with infected poultry.

The Fouchier research along with that of Kawaoka2 marked the beginning of the “Research Enterprise” for creating matPPPs in the laboratory. Subsequently in 2013, letters to the journals Science and Nature, 3,4 ...


Gain-of-function experiments on H7N9
by Ron A. M. Fouchier, Yoshihiro Kawaoka & 20 co-authors
Nature volume 500, pages 150–151(2013)
August 7, 2013

Since the end of March 2013, avian influenza A viruses of the H7N9 subtype have caused more than 130 human cases of infection in China, many of which were severe, resulting in 43 fatalities. Although this A(H7N9) outbreak is now under control, the virus (or one with similar properties) could re-emerge as winter approaches.

To better assess the pandemic threat posed by A(H7N9) viruses, investigators from the NIAID Centers of Excellence in Influenza Research and Surveillance and other expert laboratories in China and elsewhere have characterized the wild-type avian A(H7N9) viruses in terms of host range, virulence and transmission, and are evaluating the effectiveness of antiviral drugs and vaccine candidates. However, to fully assess the potential risk associated with these novel viruses, there is a need for further research, including experiments that may be classified as 'gain of function' (GOF).

Here we outline the aspects of the current situation that most urgently require additional research, our proposed studies, and risk-mitigation strategies.


The A(H7N9) virus haemagglutinin protein has several motifs that are characteristic of mammalian-adapted and human influenza viruses, including mutations that confer human-type receptor binding and enhanced virus replication in mammals. The pandemic risk rises exponentially should these viruses acquire the ability to transmit readily among humans.

Reports indicate that several A(H7N9) viruses from patients who were undergoing antiviral treatment acquired resistance to the primary medical countermeasure — neuraminidase inhibitors (such as oseltamivir, peramivir and zanamivir). Acquisition of resistance to these inhibitors by A(H7N9) viruses could increase the risk of serious outcomes of A(H7N9) virus infections.

The haemagglutinin proteins of A(H7N9) viruses have a cleavage site that is consistent with a low-pathogenic phenotype in birds. In the past, highly pathogenic H7 variants (with basic amino-acid insertions at the cleavage site that enable the spread of the virus to internal organs) have emerged from populations of low-pathogenic strains circulating in domestic gallinaceous poultry.

Normally, epidemiological studies and characterization of viruses from field isolates are used to inform policy decisions regarding public-health responses to a potential pandemic. However, classical epidemiological tracking does not give public-health authorities the time they need to mount an effective response to mitigate the effects of a pandemic virus. To provide information that can assist surveillance activities — thus enabling appropriate public-health preparations to be initiated before a pandemic — experiments that may result in GOF are critical.

Therefore, after review and approval, we propose to perform experiments that may result in GOF (see 'Proposed gain-of-function experiments').

All experiments proposed by influenza investigators are subject to review by institutional biosafety committees. The committees include experts in the fields of infectious disease, immunology, biosafety, molecular biology and public health; also, members of the public represent views from outside the research community. Risk-mitigation plans for working with potentially dangerous influenza viruses, including the 1918 virus and highly pathogenic avian H5N1 viruses, will be applied to conduct GOF experiments with A(H7N9) viruses (see Supplementary Information). Additional reviews may be required by the funding agencies for proposed studies of A(H7N9) viruses.

The recent H5N1 virus-transmission controversy focused on the balance of risks and benefits of conducting research that proved the ability of the H5N1 virus to become transmissible in mammals (see http://www.nature.com/mutantflu). These findings demonstrated the pandemic potential of H5N1 viruses and reinforced the need for continued optimization of pandemic-preparedness measures. Key mutations associated with adaptation to mammals, included in an annotated inventory for mutations in H5N1 viruses developed by the US Centers for Disease Control and Prevention, were identified in human isolates of A(H7N9) viruses. Scientific evidence of the pandemic threat posed by A(H7N9) viruses, based on H5N1 GOF studies, factored in risk assessments by public-health officials in China, the United States and other countries.

Since the H5 transmission papers were published, follow-up scientific studies have contributed to our understanding of host adaptation by influenza viruses, the development of vaccines and therapeutics, and improved surveillance.

Finally, a benefit of the H5N1 controversy has been the increased dialogue regarding laboratory biosafety and dual-use research. The World Health Organization issued laboratory biosafety guidelines for conducting research on H5N1 transmission and, in the United States, additional oversight policies and risk-mitigation practices have been put in place or proposed. Some journals now encourage authors to include biosafety and biosecurity descriptions in their papers, thereby raising the awareness of researchers intending to replicate experiments.

The risk of a pandemic caused by an avian influenza virus exists in nature. As members of the influenza research community, we believe that the avian A(H7N9) virus outbreak requires focused fundamental and applied research conducted by responsible investigators with appropriate facilities and risk-mitigation plans in place. To answer key questions important to public health, research that may result in GOF is necessary and should be done.

Box 1: Proposed gain-of-function experiments

• Immunogenicity. To develop more effective vaccines and determine whether genetic changes that confer altered virulence, host range or transmissibility also change antigenicity.
• Adaptation. To assist with risk assessment of the pandemic potential of field strains and evaluate the potential of A(H7N9) viruses to become better adapted to mammals, including determining the ability of these viruses to reassort with other circulating influenza strains.
• Drug resistance. To assess the potential for drug resistance to emerge in circulating viruses, evaluate the genetic stability of mutations conferring drug resistance, and evaluate the efficacy of combination therapy with antiviral therapeutics. Also, to determine whether A(H7N9) viruses could become resistant to available antiviral drugs, and to identify potential resistance mutations that should be monitored during antiviral treatment.
• Transmission. To assess the pandemic potential of circulating strains and perform transmission studies to identify mutations and gene combinations that confer enhanced transmissibility in mammalian models (such as ferrets and guinea pigs).
• Pathogenicity. To aid risk assessment and identify mechanisms, including reassortment and changes to the haemagglutinin cleavage site, that would enable circulating A(H7N9) viruses to become more pathogenic.


Author information

Affiliations


Erasmus Medical Center, Rotterdam, the Netherlands
Ron A. M. Fouchier

University of Wisconsin-Madison, Wisconsin, USA
Yoshihiro Kawaoka

Consortia

20 co-authors

Corresponding authors

Correspondence to Ron A. M. Fouchier or Yoshihiro Kawaoka.

Supplementary Information

Including a full list of co-authors (PDF 820 kb)

Related links

Related links in Nature Research


Limited airborne transmission of H7N9 influenza A virus between ferrets
Avian flu: Extra oversight for H7N9 experiments
H5N1 virus: Transmission studies resume for avian flu
Pause on avian flu transmission studies

Rights and permissions

Reprints and Permissions

About this article

Cite this article


Fouchier, R., Kawaoka, Y. Gain-of-function experiments on H7N9. Nature 500, 150–151 (2013). https://doi.org/10.1038/500150a

Published: 07 August 2013
Issue Date: 08 August 2013
DOI: https://doi.org/10.1038/500150a


twenty-two virologists notified the research community of their interest in creating airborne-transmissible strains of the also deadly H7N9 Asian influenza virus.

A 2015 commentary5 submitted to the U. S. National Science Advisory Board for Biosecurity (NSABB) identified at least 35 publications from laboratories, mostly in Asia, where matHPAI and other influenza viruses were created or researched. Now, there is likely more published research, and many unpublished research projects are likely underway.


(1) Should details of this dual use research be published?

The methods to create these airborne-transmissible viruses are straight-forward and could be reproduced by researchers not highly skilled in molecular virology. Furthermore, skilled molecular virologists could re-create these viruses by directly making the genetic modifications in the laboratory. Re-creating matHPAI and other PPPs brings up the serious biosecurity concern of their use for hostile purposes.

Criteria6, established in 1982, for making decisions about publication of dual use research,...

Scientific Communication and National Security: A report prepared by the Panel on Scientific Communication and National Security Committee on Science, Engineering, and Public Policy
National Academy of Sciences
National Academy of Engineering
Institute of Medicine
NATIONAL ACADEMY PRESS
Washington, D.C. 1982

PREFACE

The use of American science and technology in the rapid increase in Soviet military strength over the past decade has aroused substantial concern in the current administration. This concern has been expressed frequently in recent months by high-ranking officials, who have called for tighter controls on all forms of technology transfer, including communication among scientists by such means as the publication of papers in scientific journals and by face-to-face meetings. In addition, federal agencies have already taken steps to control the flow of data and information from scientific research. These statements and actions have led to rising concern in the U.S. scientific community that such controls might impede scientific progress and its contribution to the national welfare.

In March 1982, discussions among officials of the Academy complex and the Department of Defense led to the creation of the Panel on Scientific Communication and National Security under the aegis of the Committee on Science, Engineering, and Public Policy, a standing committee, to study the question. The charge to the Panel was, generally, to examine the relation between scientific communication1 and national security in light of the growing concern that foreign nations2 are gaining military advantage from such research. It states four major elements, as follows:

• An examination of the national security interests and the interests in free communication in two or three specific fields of science and technology (e.g., cryptology, very high speed integrated circuits, artificial intelligence) to be selected by the study panel in consultation with the Department of Defense. This analysis will include an examination of the extent to which American research has been used in Soviet military programs and, if possible, a consideration of how such information was transferred. In addition, the Panel will assess and compare the contribution to Soviet military strength from the transfer of research information with that arising from other means of technology transfer, such as the Soviet acquisition of American hardware.

• A review—with an emphasis on the International Traffic in Arms Regulations (ITAR) and the Export Administration Regulations (EAR), and a proposed executive order on the classification system—of the principal policy and operational concerns of the respective government agencies, universities, scientific societies, and researchers. (The proprietary concerns of industry will not be considered.) The goal is to identify issues where common agreement exists, to expose those where apparent disagreements are based on misperceptions and misunderstandings, and, perhaps, to narrow and sharpen the issues on which genuine differences exist.

• A rigorous evaluation of critical issues concerning the application of controls on the flow of research information.

• The development of recommendations and conclusions concerning: (i) the intended and proper reach of controls vis-à-vis various categories of science and technology; (ii) areas of science and technology that are or should be outside the operation of controls; (iii) approaches that might provide more certainty and predictability to the regulatory system; and (iv) alternative procedures that might prove acceptable to all of the concerned sectors.

This study has been sponsored by the Department of Defense, the National Science Foundation, the American Association for the Advancement of Science, the American Chemical Society, the American Geophysical Union, and the National Academy of Sciences.3 The Panel, composed of 19 members, includes senior members of university faculties and administrations, former federal agency officials, and leaders in high-technology industrial firms.

At the time the Panel was created, conversations among the Panel chairman, the President of the National Academy of Sciences, and the Under Secretary of Defense for Research and Engineering led to a decision that Panel members would be given security clearance (if they did not already possess it) so that it would be possible for them to receive classified information about technology transfers to other countries. The Panel was subsequently given three secret-level briefings by members of the intelligence community. In addition, a subpanel, comprising six members of the Panel who hold clearance at the highest level, was briefed at two additional meetings.

The Panel has examined the evidence provided at the intelligence briefings and has sought to deal with this information in a way that would eliminate the need to classify this report. The main thrust of the Panel’s findings is completely reflected in this document. However, the Panel has also produced a classified version of the subpanel report based on the secret intelligence information it was given; this statement is available at the Academy to those with the appropriate security clearance.

The Panel invited as participants in its sessions liaison representatives from all the study’s sponsors as well as from the departments of State and Commerce, the Office of Science and Technology Policy, the intelligence community, the Association of American Universities, the Institute of Electrical and Electronics Engineers, and the American Physical Society. Liaison members participated in the Panel’s open sessions and those with the appropriate security clearance attended the Panel’s classified briefings. A list of all those who participated in the Panel’s deliberations is included (see pages 72–76).


LIST OF BRIEFERS, CONTRIBUTORS, AND LIAISON REPRESENTATIVES

Briefers


ARTHUR J.ALEXANDER, Associate Head, Economics Department, The Rand Corporation

BETSY ANDERSON, Consular Officer, Bureau of Consular Affairs, Department of State

LEWIS M.BRANSCOMB, Chief Scientist, IBM Corporation

STEPHEN D.BRYEN, Deputy Assistant Secretary, International Economic, Trade and Security Policy, Department of Defense

WILLIAM D.CAREY, Executive Officer, American Association for the Advancement of Science

MICHAEL CIFRINO, Attorney Advisor, Office of the Assistant General Counsel, Department of Defense

W.DONALD COOKE, Vice President for Research, Cornell University

JOHN C.CROWLEY, Director, Federal Relations for Science and Research, Association of American Universities

JAMES DEARLOVE, Chairman, Committee on Exchanges, Technology Transfer Branch; Defense Intelligence Agency, Department of Defense

BOHDAN DENYSYK, Deputy Assistant Secretary, Export Administration, Department of Commerce

ERWIN FRIEDLANDER, Staff Physicist, Lawrence Berkeley Laboratory

ALBERT GORE, JR., Chairman, Investigations and Oversight Subcommittee, Committee on Science and Technology, House of Representatives

WALTER GRANT, Chief, Technology Transfer Branch of the Nuclear Energy and Applied Science Division, Defense Intelligence Agency, Department of Defense

C.DAVID HARTMANN, Executive Secretary, Technology Transfer Intelligence Committee

MARTIN HELLMAN, Professor, Department of Electrical Engineering, Stanford University

CHARLES HORNER, Deputy Assistant Secretary for Science and Technology, Bureau of Oceans and International Environmental and Scientific Affairs, Department of State

BOBBY RAY INMAN, Deputy Director, Central Intelligence Agency

ERNEST B.JOHNSTON, Senior Deputy Assistant Secretary, Bureau of Economic and Business Affairs, Department of State

FRANCIS B.KAPPER, Director, Military Technology Sharing, International Programs and Technology, Office of the Under Secretary of Defense for Research and Engineering, Department of Defense

MICHAEL LORENZO, Deputy Under Secretary of Defense for Research and Engineering (International Programs and Technology), Department of Defense

MICHAEL B.MARKS, Special Assistant to the Under Secretary, Office of the Under Secretary for Security Assistance, Science and Technology, Department of State

RICHARD F.POST, Deputy Associate Director for Physics, Magnetic Fusion Division, Lawrence Livermore National Laboratory

FRANK H.T.RHODES, President, Cornell University

RONALD RIVEST, Professor, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology

HOWARD E.ROSENBLUM, Deputy Director for Communications Security, National Security Agency

JOSEPH P.SMALDONE, Chief, Arms Licensing Division, Office of Munitions Contol, Department of State

RICHARD SPICER, Intelligence Analyst, Soviet Section, Intelligence Division, Federal Bureau of Investigation

STEPHEN UNGER, Professor, Department of Computer Science, Columbia University

JACK VORONA, Assistant Vice Director for Scientific and Technical Intelligence (International), Defense Intelligence Agency, Department of Defense

DAVID A.WILSON, President’s Executive Assistant, University of California

LEO YOUNG, Director for Research and Technical Information, Office of the Under Secretary of Defense for Research and Engineering, Department of Defense

Contributors

LAURENCE J.ADAMS, Senior Vice President, Martin Marietta Corporation

WAYNE BERT, Munitions Policy Analyst, International Economic, Trade and Security Policy, Department of Defense

JENNIFER SUE BOND, Program Analyst, National Science Foundation

J.FRED BUCY, President, Texas Instruments, Inc.

ALAN M.CAMPBELL, Executive Secretary, U.S.-U.S.S.R. Committee on Cooperation in Physics, Office of International Affairs, National Academy of Sciences

ROSEMARY CHALK, Program Head for Scientific Freedom and Responsibility, American Association for the Advancement of Science

JOHN C.CROWLEY, Director, Federal Relations for Science and Research, Association of American Universities

EDWARD E.DAVID, JR., President, Exxon Research and Engineering Company

CAROLE A.GANZ, International Science Analyst, National Science Foundation

RICHARD L.GARWIN, IBM Fellow, T.J.Watson Research Center, IBM Corporation

S.E.GOODMAN, Professor, Department of Information Systems and Decision Sciences, University of Arizona

RUTH GREENSTEIN, Associate General Counsel, Policy, National Science Foundation

WILLIAM C.HITTINGER, Executive Vice President, RCA Corporation

JEANNE E.HUDSON, Special Assistant, Office of the Director, National Science Foundation

JOHN W.KISER III, Kiser Research, Inc.

RICHARD KRASNOW, Congressional Science Fellow

LAWRENCE C.MITCHELL, Staff Director, Office of International Affairs, National Academy of Sciences

MARTIN E.PACKARD, Assistant to the Board Chairman, Varian Associates

THOMAS O.PAINE, Thomas Paine Associates

HAROLD RELYEA, Analyst, Government Division, Congressional Research Service

LEONARD M.RIESER, Chairperson, Committee on Scientific Freedom and Responsibility, American Association for the Advancement of Science

IAN M.ROSS, President, Bell Laboratories

ROBERT D.SCHMIDT, Vice Chairman of the Board, Control Data Corporation

ROLAND W.SCHMITT, Vice President, Corporate Research and Development, General Electric Company

MICHAEL A.STROSCIO, Special Assistant to the Director of Research and Technical Information, Office of the Under Secretary of Defense for Research and Engineering, Department of Defense

Liaison Representatives

American Academy of Arts and Sciences


HERMAN FESHBACH, Professor, Department of Physics, Massachusetts Institute of Technology

American Association for the Advancement of Science

J.THOMAS RATCHFORD, Associate Executive Officer, American Association for the Advancement of Science

American Chemical Society

RAYMOND P.MARIELLA, Executive Director, American Chemical Society

American Geophysical Union

FRED SPILHAUS, Executive Director, American Geophysical Union

American Physical Society

MELVIN B.GOTTLIEB, Science and Public Policy Fellow, The Brookings Institution

THOMAS A.BARTLETT, President, Association of American Universities

Association of American Universities-Department of Defense Forum

DAVID A.WILSON, President’s Executive Assistant, University of California

Department of Commerce

BOHDAN DENYSYK, Deputy Assistant Secretary, Export Administration, Department of Commerce

Department of Defense

STEPHEN D.BRYEN, Deputy Assistant Secretary, International Economic, Trade and Security Policy, Department of Defense

FRANCIS B.KAPPER, Director, Military Technology Sharing, International Programs and Technology, Office of the Under Secretary of Defense for Research and Engineering, Department of Defense

LEO YOUNG, Director for Research and Technical Information, Office of the Under Secretary of Defense for Research and Engineering, Department of Defense

Department of State

MICHAEL B.MARKS, Special Assistant to the Under Secretary, Office of the Under Secretary for Security Assistance, Science and Technology, Department of State

Intelligence Community

JAN P.HERRING, Chairman, Technology Transfer Intelligence Committee

National Aeronautics and Space Administration

BURTON I.EDELSON, Associate Administrator for Space Science and Applications, NASA

JACK KERREBROCK, Associate Administrator for Office of Aeronautics and Space Technology, NASA

National Science Foundation

DONALD N.LANGENBERG, Deputy Director, National Science Foundation

EDWARD MCGAFFIGAN, Assistant Director for International Affairs, Office of Science and Technology Policy

The Institute of Electrical and Electronics Engineers, Inc.

ROBERT P.BRISKMAN, Assistant Vice President, COMSAT General Corporation


The Panel held three two-day meetings in Washington at which it was briefed by representatives of the departments of Defense, State, and Commerce, and by representatives of the intelligence community, including the Central Intelligence Agency, the Federal Bureau of Investigation, the Defense Intelligence Agency, and the National Security Agency. The Panel also heard presentations by members of the research community and by university representatives. In addition to these briefings, the Rand Corporation prepared an independent analysis of the transfer of sensitive technology from the United States to the Soviet Union.4 To determine the views of scientists and administrators at major research universities, the Panel asked a group of faculty members and administrative officials at Cornell University to prepare a paper incorporating their own views and those of counterparts at other universities (see Working Papers). The Panel also requested and received letters from a group of executives from high-technology industries expressing their views (see Appendix C). The Panel commissioned papers by experts in various aspects of technology transfer and studied the published material on the subject. It examined a few specific scientific areas in some detail.

In order to determine how and where controls might further the national welfare, it is necessary to balance many factors, including the military advantage from controls, their impact on the ability of the research process to serve military, commercial and basic cultural goals, and their effects on the education of students in science and technology. The Panel hopes that this report serves to identify these important issues and to set out recommendations that achieve an appropriate balance.

The Panel is grateful for the assistance provided by the departments of Defense, State, and Commerce, and by the various intelligence agencies. Without their generous help, our task would have been impossible. The liaison representatives of the various departments, agencies, and organizations also contributed to our effort, and we thank them as well. We are also appreciative of the work of the Cornell University committee, which was headed by W.Donald Cooke. We wish to express special thanks to Frank Press, President of the National Academy of Sciences; Courtland Perkins, President of the National Academy of Engineering; and Philip M.Smith, Executive Officer of the National Academy of Sciences for their help and support. I wish to extend my personal thanks to Lawrence McCray, project director, Mitchel Wallerstein, staff consultant, and to Elizabeth Panos, administrative assistant, for their staff support. We are also grateful to Barbara Darr and Allan Hoffman of the COSEPUP staff. Finally, I wish to express my thanks to the individual members of the Panel for their dedicated service in making an early report possible.

Dale R.Corson
Chairman
_______________

Notes:

1. The Panel has concerned itself with scientific communication flowing from a range of research activities embracing basic and applied research and extending over a series of institutions, including universities, industrial laboratories, and government laboratories. A major share of the Panel’s attention has been devoted to university research where no restraints on dissemination of findings—such as restraints to preserve proprietary interests, for example—have existed.

2. The Panel has concentrated its effort primarily on the U.S.-U.S.S.R. relationship, given the level of concern about that problem and the limited time and resources available.  

3. The NAS contribution was drawn from funds used for Academy-initiated projects; the funds were provided by the NAS consortium of private foundations. The consortium comprises the Carnegie Corporation of New York, the Charles E.Culpeper Foundation, the William and Flora Hewlett Foundation, the John D. and Catherine T.MacArthur Foundation, the Andrew W.Mellon Foundation, and the Rockefeller Foundation.

4. This paper, among others, is included in the collected working papers used by the Panel. A photocopy is available from the National Academy Press, 2101 Constitution Avenue, N.W., Washington, D.C. 20418.


have been applied recently by Relman7 to lab-created PPPs. The criteria as described by Relman are:

“[Four] criteria to define research for which communication ought to be limited (all of which must be met): (1) research with dual use or military applications, (2) research with a short time to such applications, (3) research when dissemination could give short-term advantage to adversaries, and (4) research when the information was believed not to be already held by adversaries.”


“Inconvenient Truths” in the Pursuit of Scientific Knowledge and Public Health
by David A. Relman
The Journal of Infectious Diseases, Volume 209, Issue 2, 15 January 2014, Pages 170–172, https://doi.org/10.1093/infdis/jit529
Published: 07 October 2013

(See the major article by Barash and Arnon on pages 183–91and Dover et al on pages 192–202,and the editorial commentaries by Popoff on pages 168–9and Hooper and Hirsch on page 167.)

In this issue of The Journal of Infectious Diseases, a group of scientists and physicians from a state public health laboratory present a discovery with important scientific, public health, and security implications, and a difficult dilemma [1, 2]. Their identification of a novel, eighth botulinum neurotoxin (BoNT) from a patient with botulism expands our understanding of Clostridium botulinum and BoNT diversity, C. botulinum evolution, and the pathogenesis of botulism, but it also reveals a significant public health vulnerability. This new toxin, BoNT/H, cannot be neutralized by any of the currently available antibotulinum antisera, which means that we have no effective treatment for this form of botulism. Until anti-BoNT/H antitoxin can be created, shown to be effective, and deployed, both the strain itself and the sequence of this toxin (with which recombinant protein can be easily made) pose serious risks to public health because of the unusually severe, widespread harm that could result from misuse of either [3]. Thus, the dilemma faced by these authors, and by society, revolves around the question, should all of the information from this and similar studies be fully disseminated, motivated by the desire to realize all possible benefits from the discovery, or should dissemination of some or all of the information be restricted, with the goal of diminishing the probability of misuse?

In the early 1980s, Dale Corson, who was president emeritus of Cornell University, led a now-famous study at the US National Academy of Science that culminated in a report entitled Scientific Communication and National Security [4]. The committee explored the growing tension between the principle of openness in science and consequent concerns about national security, which assumed prominence in US public discourse with the development of the atomic bomb and then served as the basis for vigorous debate at the time of their study during the height of the cold war. The report is remembered for having drawn a sharp, “bright” line between scientific information whose communication deserves strict control, that is, national security classification, and information that should be freely disseminated. The committee recommended a long-term national strategy of “security by accomplishment,” to be achieved through a vigorous and open research enterprise. It reminded readers about the “inherent limits on the feasibility and effectiveness of controls,” especially when pursued in the domain of basic scientific research. The persuasive arguments of the Corson committee about a bright line shaped national policy and were cited in President Reagan's National Security Decision Directive 189, which declared in 1985 that “to the maximum extent possible, the products of fundamental research remain unrestricted …[W]here the national security requires control, the mechanism for control of information generated during federally-funded fundamental research … is classification.” [5] This policy has been reaffirmed by subsequent presidential administrations.

What is less well appreciated is that the Corson report also discussed “a small ‘gray area’ of research activities for which limited restrictions short of classification are appropriate” [4]. The Corson committee offered 4 criteria to define research for which communication ought to be limited (all of which must be met): (1) research with dual use or military applications, (2) research with a short time to such applications, (3) research when dissemination could give short-term advantage to adversaries, and (4) research when the information was believed not to be already held by adversaries. They then suggested that classification was not appropriate in all such circumstances, and that there might be other mechanisms of control. As an alternative mechanism, the committee recommended a form of voluntary prepublication control exercised by the investigator. Of interest, given recent political debates, they cited a successful early experiment in voluntary prepublication control for manuscripts dealing with cryptography, involving academia and the National Security Agency.

The Corson “gray area” was largely ignored in subsequent years, in part because there were few concrete and compelling examples of work that might fit in this category and, in part, because the practical aspects of a nonclassification information control mechanism were, and remain, profoundly challenging. Yet, the ongoing revolution in the life sciences now forces us to confront an uncomfortable reality: The same process by which we gain further understanding of biology, invent powerful methods for reengineering genomes and organisms, and derive critical solutions to the problems that ail us and our planet is a path that will predictably generate new and increasingly substantial risks [6]. An important case study in 2012 involved the deliberate engineering of highly pathogenic avian influenza viruses with enhanced properties of transmissibility [7, 8]. The scientific outcome was easily anticipated as it was the stated and intended goal of the investigators, but the risks of the proposed experiments were not widely discussed ahead of time, nor were alternative scientific approaches or risk mitigation strategies. When the National Science Advisory Board for Biosecurity, of which I am a member, initially recommended to the US government, after careful assessment of the risks and benefits, that some of these scientific results not be widely disseminated, the absence of a mechanism, other than classification, for limited distribution of the information confounded policy makers. The need for such a mechanism now deserves renewed serious deliberation and wider discussion, because we are inadequately served by just 2 options, that is, unrestricted dissemination and classification. Some information from life sciences research has an unusually high likelihood of immediately enabling irresponsible or malevolent persons to do grave harm to society, and deserves some control. Yet, classification may not be appropriate, because the burdens of working within the classified environment might hinder needed countermeasure work, or the criteria for national security classification might not be met, such as in the current case where the information is not owned by, produced by or for, or under the control of the US government [9]. A mechanism for short-term, limited distribution is needed while risk mitigation measures are devised (eg, therapies and vaccines), even though the control of distribution will be far from perfect.

The 2 articles in this issue of JID [1, 2] highlight an important alternative mechanism for management of risk in life sciences research, albeit an imperfect one, and take us back to 1982, to Dale Corson and colleagues. The authors of these articles, believing that the sequence information of BoNT/H poses an immediate and unusually serious risk to society, and that the information was unlikely to be already in the hands of those who would seek to do harm, decided to exercise voluntary prepublication control and to withhold this specific information. The more general and less risky aspects of the information were submitted for publication to alert the public to the discovery. This investigator-initiated strategy has merit and deserves careful consideration, but some major caveats should be noted. First, this strategy offers only short-term benefits, as data generated in today's highly interconnected world will inevitably become disseminated. (Corson's “inherent limits on the effectiveness of controls” are even more apparent today.) Given current capabilities in gene synthesis and expression, possession of the sequence is tantamount to possession of the toxin. Therefore, for this strategy to make sense, every effort should be made to exploit this temporary benefit, and to promote immediate, rapid development of an effective countermeasure, that is, anti-BoNT/H antisera. In fact, studies to inform countermeasure development are well under way. Second, this approach poses significant danger to the research enterprise in general if decisions to adopt this approach are made casually, arbitrarily, or frequently.
However, I agree with the actions of the authors in this specific case. Although government officials may have participated in a discussion about these papers, to my knowledge relevant stakeholders outside the government were not involved. Going forward, decisions should be based on the best available guidance from experts representing broad, diverse constituencies, including nonscientist representatives of the public, and should be made in a transparent manner.

As more powerful techniques are used to explore the natural world [1, 2] and generate novel biological diversity [7], benefits and risks will both multiply and magnify. And the “gray area” will expand. Voluntary controls may have worked reasonably well for the field of cryptography in the early 1980s because, as the Corson committee remarked, the field was relatively small, its dual use features were obvious, and at the same time, the National Security Agency had high technical competence and an interest in promoting open science. Today's world of the life sciences is much more challenging and consequential.

The life sciences encompass a large number of disciplines and practitioners around the globe, with disparate purposes. Therefore, more expansive, balanced, and dispassionate discussion will be needed, and it must include difficult questions, such as whether there are experiments that should not be undertaken because of disproportionately high risk. In addition, as suggested by Corson et al., we need to make controls more workable, improve the factual basis for decisions on whether and when to exercise such controls, and improve mutual understanding between the government and the scientific community. Finally, for voluntary controls to play a useful role in the management of problematic information in the “gray area,” scientists will first need to recognize their ethical and moral responsibilities to society in the pursuit of knowledge [10]. Scientists have obligations to society that involve more than blind pursuit of information. Like clinicians, scientists have an obligation to do no harm.

Notes

Financial support. This work was supported by the National Institutes of Health (DP1OD000964, R01AI092531, R01GM099534, R01DE023113, U54AI065359), the Doris Duke Charitable Trust, the March of Dimes Foundation, and the Thomas C. and Joan M. Merigan Endowment at Stanford University.

Potential conflicts of interest.

The author is on the board of Seres Health and Novartis Vaccines, and is a consultant for Proctor & Gamble.

The author has submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1 Barash JR, Arnon SS. A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins, J Infect Dis, 2014, vol. 209 (pg. 183-91)
2 Dover N, Barash JR, Hill KK, Xie G, Arnon SS. Molecular characterization of a novel botulinum neurotoxin type H gene, J Infect Dis, 2014, vol. 209 (pg. 192-202)
3 Arnon SS, Schechter R, Inglesby TV, et al. Botulinum toxin as a biological weapon: medical and public health management, JAMA, 2001, vol. 285 (pg. 1059-70)
4 Panel on Scientific Communication and National SecurityScientific communication and national security., 1982Washington, DCNational Academy Press
5 National Security Decision Directive 189 (NSDD 189)National policy on transfer of scientific, technical and engineering information, 1985Washington, DC:Executive Office of the President of the United States,
6 Relman DA. The biological century: coming to terms with risk in the life sciences, Nat Immunol, 2010, vol. 11 (pg. 275-8)
7 Herfst S, Schrauwen EJ, Linster M, et al. Airborne transmission of influenza A/H5N1 virus between ferrets, Science, 2012, vol. 336 (pg. 1534-41)
8 Imai M, Watanabe T, Hatta M, et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets, Nature, 2012, vol. 486 (pg. 420-8)
9 Executive Office of the President of the United StatesClassified national security information, Executive Order 12958., 1995, vol. 60 Washington, DCFederal Register(pg. 19825-43)
Google Scholar
10 Relman DA. The increasingly compelling moral responsibilities of life scientists, The Hastings Cent Rep, 2013, vol. 43 (pg. 34-5)


For some matHPAIs, the dual use concern is now moot, as details needed for airborne transmission in mammals have already been published.

The recent publication providing the details of the de novo creation of horsepox virus is of great concern, as the methods could be used to resurrect the smallpox virus. Smallpox ravaged the world until it was eliminated in 1980. As Koblentz has pointed out8: “The synthesis of horsepox virus takes the world one step closer to the reemergence of smallpox as a threat to global health security.” The international community must do whatever is possible to prevent the reemergence of smallpox.

The De Novo Synthesis of Horsepox Virus: Implications for Biosecurity and Recommendations for Preventing the Reemergence of Smallpox
by Gregory D. Koblentz
Published Online:1 Dec 2017
https://doi.org/10.1089/hs.2017.0061

Abstract

In March 2017, the American biotech company Tonix announced that a Canadian scientist had synthesized horsepox virus as part of a project to develop a safer vaccine against smallpox. The first de novo synthesis of an orthopoxvirus, a closely related group of viruses that includes horsepox and the variola virus that causes smallpox, crosses an important Rubicon in the field of biosecurity. The synthesis of horsepox virus takes the world one step closer to the reemergence of smallpox as a threat to global health security. That threat has been held at bay for the past 40 years by the extreme difficulty of obtaining variola virus and the availability of effective medical countermeasures. The techniques demonstrated by the synthesis of horsepox have the potential to erase both of these barriers. The primary risk posed by this research is that it will open the door to the routine and widespread synthesis of other orthopoxviruses, such as vaccinia, for use in research, public health, and medicine. The normalization and globalization of orthopoxvirus synthesis for these beneficial applications will create a cadre of laboratories and scientists that will also have the capability and expertise to create infectious variola virus from synthetic DNA. Unless the safeguards against the synthesis of variola virus are strengthened, the capability to reintroduce smallpox into the human population will be globally distributed and either loosely or completely unregulated, providing the foundation for a disgruntled or radicalized scientist, sophisticated terrorist group, unscrupulous company, or rogue state to recreate one of humanity's most feared microbial enemies. The reemergence of smallpox—because of a laboratory accident or an intentional release—would be a global health disaster. International organizations, national governments, the DNA synthesis industry, and the synthetic biology community all have a role to play in devising new approaches to preventing the reemergence of smallpox.


(2) Could a release from the laboratory into the community seed a pandemic?

A calculation9 of the probability of release from a single lab in the Research Enterprise in a single year was found to be 0.20%. For ten labs in the Research Enterprise carrying out research for ten years, the probability of release from one of the labs is about 10 x 10 x 0.20% = 20%, an uncomfortably high number.

Lipsitch10 and Merler11 estimate the probability of a pandemic from a laboratory release ranges from 5% to 50%. Using an intermediate value in that range, 25% or 0.25, the probability of a pandemic in ten years from the Research Enterprise is the probability of release times the probability that a release leads to a pandemic, which is 0.25 x 20% x 0.25 = 5%. The likelihood of a natural pandemic in the next ten years is about 31% 12. Therefore, concern over a pandemic from a Research Enterprise laboratory release should rival our grave concern over a natural pandemic.
admin
Site Admin
 
Posts: 36172
Joined: Thu Aug 01, 2013 5:21 am

Re: U.S. government gave $3.7 million grant to Wuhan lab at

Postby admin » Mon Aug 03, 2020 1:04 am

Part 2 of 2

Are lab-created potential pandemic pathogens biological weapons?

The possibility has been raised that matHPAIs could be used as biological weapons.

For instance, in a 2012 Comment in the science journal Nature13, the NSABB voiced their concern:

“Dual use is defined as research that could be used for good or bad purposes. We are now confronted by a potent, real-world example…If influenza A/H5N1 virus acquired the capacity for human-to-human spread and retained its current virulence, we could face an epidemic of significant proportions…Recently, several scientific research teams have achieved some success in modifying influenza A/H5N1 viruses such that they are now transmitted efficiently between mammals, in one instance with maintenance of high pathogenicity…these scientific results also represent a grave concern for global biosecurity, biosafety and public health. Could this knowledge, in the hands of malevolent individuals, organizations or governments, allow construction of a genetically altered influenza virus capable of causing a pandemic? ...Our concern is that publishing these experiments in detail would provide information to some person, organization or government that would help them to develop similar mammal-adapted influenza A/H5N1 viruses for harmful purposes.”


Another concerned voice is found in a lead editorial in the journal Science14 by Nobel Laureate Paul Berg:

“Recent research with a highly pathogenic influenza virus has highlighted the importance of this issue. Reviews of the influenza research concluded that given “the risk of accidental or malicious release,” the benefits of such studies must be well justified. Thus, specific guidelines must be enforced to thwart not only intentionally harmful outcomes but accidental releases as well… Earlier this year, the NSABB was embroiled in a high-profile decision regarding the publication of research on enhanced transmissibility of the avian H5N1 influenza virus. The principal concern was that publishing such findings might embolden those with sinister motives to use that information to create a worldwide pandemic.”


The Dual-Use Conundrum
by Paul Berg
Science
Vol. 337, Issue 6100, pp. 1273
DOI: 10.1126/science.1229789
September 14, 2012

Image
Paul Berg is the Cahill Professor of Biochemistry, Emeritus, at the Stanford University School of Medicine, Palo Alto, CA. He received the Nobel Prize in Chemistry in 1980 and was an organizer of the Asilomar conference on recombinant DNA in 1975. Email: pberg@stanford.edu.

Scientists are increasingly able to create genetically modified microorganisms whose properties are perceived as being beneficial as well as potentially useful for malevolent purposes. In 2004, a committee of the U.S. National Academy of Sciences adopted the term “dual use” for instances in which genetic or biosynthetic manipulations create new microorganisms, which, although valuable scientifically, are susceptible to misuse.1 The premise was that the prospects for malevolent outcomes derive from deliberate actions to inflict specific or widespread harm. But in those and subsequent discussions, too little attention was given to the likelihood of an accidental laboratory release of modified agents that would allow them to spread in susceptible human populations. Recent research with a highly pathogenic influenza virus has highlighted the importance of this issue. Reviews of the influenza research concluded that given “the risk of accidental or malicious release,” the benefits of such studies must be well justified.2 Thus, specific guidelines must be enforced to thwart not only intentionally harmful outcomes but accidental releases as well.

The 2004 committee recommended that individual scientists and the editors of scientific journals exercise responsible judgment in undertaking and publishing experiments that describe the creation of, or could lead to, such biological agents of concern. This led to the creation of the U.S. National Science Advisory Board for Biosecurity (NSABB) to advise the federal government on policies governing publication, public communication, and dissemination of dual-use research methodologies and results. Recognizing that identifying all experiments or products of potential misuse was problematic, the NSABB adopted the term “dual-use research of concern” to focus on those entities that could, if misused, cause grave harm on a large scale.

Earlier this year, the NSABB was embroiled in a high-profile decision regarding the publication of research on enhanced transmissibility of the avian H5N1 influenza virus. The principal concern was that publishing such findings might embolden those with sinister motives to use that information to create a worldwide pandemic. The final outcome was to publish the papers in their entirety, reflecting a judgment that the risk of malicious actions was less than the benefits investigators would derive from an enhanced capability to design protective measures.3 Throughout that debate, far less attention was given to the probabilities of inadvertent release of the modified viral strains and the consequences for susceptible human populations. Past experience provides a useful lesson. In the 1970s, accidental release was at the center of the biosafety debate generated by the advent of recombinant DNA technology. A meeting of scientists at Asilomar in 1975 resulted in federal and institutional oversight and regulation of recombinant DNA research. In that case, specific modes of physical and biological containment, commensurate with the anticipated potential risks, were mandated to minimize the potential harm from an inadvertent release of genetically modified agents. There were also experiments that were forbidden for this reason. At that time, the possibility of state-initiated terrorism was considered but judged to be of lesser concern than accidents.

Although deliberate misuse might well pose a greater risk today, recent calculations suggest that in research with highly transmissible and virulent biological agents, accidental release remains of great concern.4 It is imperative, therefore, that funding agencies and research institutions pay special heed to the effectiveness of the containment being used to minimize the likelihood of either accidental or malicious release. It is also essential that all laboratory personnel be highly trained and tightly supervised to ensure biosecurity.

_______________

Notes:

1. National Research Council, Biotechnology Research in an Age of Terrorism (National Academy Press, Washington, DC, 2004).

2. M. Lipsitch et al., Science 336, 1529 (2012).

3. M. Enserink, Science 336, 1494 (2012).

4. L. C. Klotz, E. J. Sylvester, Bulletin of the Atomic Scientists (7 August 2012); http://thebulletin.org/web-edition/feat ... e-pandemic.


The phrases “malevolent individuals, organizations or governments,” “intentionally harmful outcomes,” and “sinister motives” describe employment of these lab-created pathogens as biological weapons.

The Biological Weapons Convention15 was written with a focus on military tactical biological weapons, where significant quantities would usually be employed. Article I of the convention speaks to this focus:

“Article I
Each State Party to this Convention undertakes never in any circumstances to develop, produce, stockpile or otherwise acquire or retain:
(1) Microbial or other biological agents, or toxins whatever their origin or method of production, of types and in quantities that have no justification for prophylactic, protective or other peaceful purposes;
(2) Weapons, equipment or means of delivery designed to use such agents or toxins for hostile purposes or in armed conflict.”


For lab-created PPPs, any quantity, however small, could seed an outbreak or pandemic. In this circumstance, development also implies production and stockpiling, since a single vial and one to a few infected individuals is all that is necessary to launch an attack.

From a military tactical point of view, however, lab-created PPPs would not be good biological weapons as they would boomerang back on the attackers, since they are highly transmissible. Nonetheless, a suicidal terrorist group or a desperate State might employ them as a last resort, or threaten to employ them as a means of extortion.

Call for action from the Parties to the BWC

When Fouchier and Kawaoka carried out their research, it was unlikely that biological weapons even crossed their minds. Since that possibility has now been brought up, researchers who are creating PPPs must take into account the biological weapons risk of dual use information and laboratory release of their pathogens. If there is little public-health benefit or little defense rationale for particular research, the Parties to the BWC should question whether it is biological weapons development and act accordingly.

This is a complex issue. The question of what constitutes biological weapons development is complicated. Many biodefense activities of the U.S Department of Homeland Security’s proposed and now abandoned National Biodefense Analysis and Countermeasures Center would be considered biological weapons development. As pointed out in a letter16 in the journal Politics and the Life Sciences: "Taken together, many of the [proposed] activities…— most particularly the ‘‘Store, Stabilize, Package, Disperse’’ sequence and the ‘‘Computational modeling of feasibility, methods, and scale of production’’ item — may constitute development in the guise of threat assessment, and they certainly will be interpreted that way."


Biodefense crossing the line
by Milton Leitenberg, Senior Research Scholar, Center for International and Security Studies at Maryland School of Public Policy, University of Maryland, College Park, MD, mleitenb@umd.edu
Ambassador James Leonard, Head of the United States Delegation to the Biological Weapons Convention Negotiations, 1972
Dr. Richard Spertzel, Former Deputy Director, USAMRIID, and Senior Biologist on the Staff of the United Nations Special Commission (UNSCOM), 1994-1998
September, 2003
© Association for Politics and the Life Sciences

Last February, on Monday the ninth, Lieutenant Colonel George W. Korch, Jr, Ph.D., United States Army, speaking in his capacity as Deputy Director of the National Biodefense Analysis and Countermeasures Center (NBACC), Fort Detrick, Maryland, addressed the 2004 Department of Defense Pest Management Workshop, meeting in Florida at the Jacksonville Naval Air Station. He spoke in the Main Ballroom of the River Cove Officers’ Club. As of this writing the workshop’s full schedule1 still shows a hypertext link to his remarks, but the link is no longer active. While it was active, as late as April, a copy of his remarks, presented as computer slides, could be downloaded to any computer, anywhere. It can still be found, unofficially.2

NBACC is to contain four separate centers, buildings for each of which are being built adjacent to the US Army Medical Research Institute of Infectious Diseases (USAMRIID). One of the four centers, the Biothreat Characterization Center, according to Dr. Korch’s slides, will carry out studies in some sixteen different subject areas, among which will be these:

• genetic engineering;
• susceptibility to current therapeutics;
• host-range studies;
• environmental stability;
• aerosol animal-model development;
• aerosol dynamics;
• novel packaging;
• novel delivery of threat;
• bioregulators and immunomodulators; and
• “Red Teaming,” which is to say duplication of threat scenarios.

Task areas for biothreat-agent (BTA) analysis and technical-threat assessment were summarized as “Acquire, Grow, Modify, Store, Stabilize, Package, Disperse.” Classical, emerging, and genetically engineered pathogens are to be characterized for their BTA potential. Aerobiology, aerosol physics, and environmental stability will be studied in wet-laboratory and computer-laboratory settings. “Computational modeling of feasibility, methods, and scale of production” will be undertaken, and “Red Team” operational scenarios and capabilities will be assessed. BTA use and countermeasure effectiveness will be studied “across the spectrum of potential attack scenarios” through “[h]igh-fidelity modeling and simulation.” And so forth.3

The rapidity of elaboration of American biodefense programs, their ambition and administrative aggressiveness, and the degree to which they push against the prohibitions of the Biological Weapons Convention (BWC), are startling.


The production and stockpiling of biological-weapons agents are not the only criteria by which an offensive biological weapons (BW) program is defined. They are only such a program’s most obvious terminal expressions. Taken together, many of the activities detailed above — most particularly the “Store, Stabilize, Package, Disperse” sequence and the “Computational modeling of feasibility, methods, and scale of production” item — may constitute development in the guise of threat assessment, and they certainly will be interpreted that way. Development is prohibited by the Biological Weapons Convention.

How would these activities differ from their counterparts in the pre-1969 US BW program except for production and stockpiling this time not being envisioned?4 In recent remarks elsewhere, Dr. Korch noted that one NBACC objective, creation of genetically engineered agents, might raise BWC compliance questions. Yet other NBACC objectives could prove even more problematic.

On April 28, 2004, at the conclusion of a year’s review, the Bush administration disclosed details of the new National Biodefense Directive.5 Among them, reportedly, was that “the US intelligence community is under orders to carry out studies examining the types of genetically engineered ‘bugs’ terrorists could be working on to mount an attack.”6 Surely, the “intelligence community” is the least appropriate place in the US government to “carry out” such work — and the most likely to lack adequate oversight. And does a program of this design bear any relation to the realistic level of threat presented by non-state actor “bioterrorists”?7 Recently declassified documents demonstrate that the US intelligence community possesses evidence demonstrating that interested terrorist groups — al Qaeda among them — still have no capability to work with classical BW agents and certainly cannot engineer agents genetically.

What will be the effect of NBACC’s work program on the worldwide evolution of BW over the next twenty or thirty years? Work on bioregulators and immunomodulators in the former Soviet offensive BW program during the 1980s is in retrospect realized to have been among the most dangerous and reprehensible of its numerous nefarious activities, despite having never approached weaponization, staying “safely” at research-and-development stages. Other than context — a preposterously huge offensive BW program — was work on bioregulators and immunomodulators qualitatively different from the work now to be carried out in the United States?

Will all the work in the categories listed above be classified, carried out under conditions of secrecy, or will it be open, generating peer-reviewed publications? The present US administration, if it was willing to scuttle attempts to finalize a verification protocol for the Biological Weapons Convention so as to shield the US biodefense program as constituted around 2001 and 2002, seems unlikely to welcome or even tolerate scrutiny of a program orders of magnitude larger and much closer to treaty breach. Yet circumstances are confounded still further. Some argue that a biodefense program can be legitimate only if it is transparent. That may be so, but if results to be sought as above were openly to be published then information plausibly facilitating BW efforts elsewhere would be disseminated.

Alternatively, if the US program proceeds in secret, what will be the reaction of other countries — including Russia and China? Will the twelve-year American-British effort to open major BW-capable facilities of the Russian Ministry of Defense be made more likely or less likely to succeed? Finally, will rivals steer currently legitimate biodefense programs down the new American path, but even more deeply in shadow?


References

1. < http://www.afpmb.org/pubs/misc/TriServi ... s-2004.pdf >.
2. < http://www.cbwtransparency.org/archive/nbacc.pdf >.
3. George Korch, “Leading Edge of Biodefense: The National Biodefense Analysis and Countermeasures Center,” Proceedings, Military Entomology — Its Global Challenge, 2004 DoD Pest Management Workshop, Naval Air Station, Jacksonville, Florida, February 9-13, 2004. Sponsored by the Armed Forces Pest Management Board Office of the Deputy Under Secretary of Defense (Installations and Environment), Washington, D.C.
4. Milton Leitenberg, “Distinguishing offensive from defensive biological weapons research,” Critical Reviews in Microbiology 29:3 (2003), pp. 223-257.
5. “Biodefense for the 21st Century,” Office of the President, April 2004; “HHS Fact Sheet. Biodefense Preparedness. Public Health Emergency Preparedness. Transforming America’s Capacity to Respond,” News Release, US Department of Health and Human Services, April 28, 2004; “Fact Sheet: Bush Signs Biodefense Presidential Directive,” US Department of State, April 28, 2004.
6. John Mintz, “Bioterrorism Procedures Are Outlined. Bush Directive Specifies Agency Responsibilities,” Washington Post, April 29, 2004
7. Milton Leitenberg, “Biological weapons and bioterrorism in the first years of the twenty-first century,” Politics and the Life Sciences, September 2002, 21:2, pp. 3-27.


Recent articles directed to the Eighth BWC Review Conference (for instance, see here,...

Keeping the Biological Weapons Convention relevant
by Gabrielle Tarini
Bulletin of the Atomic Scientists
November 1, 2016

Officials gathering in Geneva next week to examine the status of the Biological Weapons Convention (BWC) will have a choice between plodding along with the current, broken process or taking concrete steps to reinvigorate a treaty that is integral to the international security landscape. For the 41-year-old treaty, the upcoming Eighth Review Conference is a pivotal opportunity for countries to take action to ensure that the treaty remains a relevant and useful tool for preventing the development, spread, and use of biological weapons. A failure by member states to invest the necessary attention, time, and political capital in the conference could mean decreased interest and weakened multilateral engagement in a treaty that was the first to ban an entire category of weapons of mass destruction.

The treaty prohibits the possession of biological and toxin weapons. It covers a broad range limited primarily by intent: Parties to the Biological Weapons Convention agree not to develop, acquire, or retain agents, toxins, or delivery systems for non-peaceful purposes. The treaty has been tremendously successful in building a broad agreement that the life sciences should only be used for benign purposes, and a robust norm against the use of disease as a means of warfare. While membership in the BWC is not yet universal, no state claims that biological weapons are a legitimate means of national defense.
Even countries that are thought to be pursuing biological weapons, such as North Korea, do not assert that they have a right to these weapons, or that biological weapons are a legitimate means of strategic deterrence.

The parties to the BWC agree that it is an important disarmament treaty representing a strong norm against biological weapons, but that is one of their few areas of agreement. Translating consensus into action has been difficult; the language adopted at previous Review Conferences has often repeated broad generalities and failed to advance a common agenda. This time around, the countries that are parties to the treaty should aim for fresh language and delineate specific actions to take.

Keeping pace with biotechnology.

The purpose of the Review Conference, held every five years, is to review the operation of the treaty and consider whether any new scientific and technological developments could enable activities that are inconsistent with the aims and objectives of the treaty, and that are not already covered by its provisions. There are several key issues at stake in the upcoming conference, scheduled for November 7–25.

Perhaps most critically, the BWC must find a more effective way to adapt to the rapid pace of scientific and technological change. Biotechnology methods and equipment are more powerful than ever, and barriers to their acquisition and use have eroded. For example, new gene-editing methods, such as Crispr, have significant biosecurity implications. Crispr has grabbed national headlines as the latest example of the dangers of dual-use technology. Earlier this year, Director of National Intelligence James R. Clapper named genome editing as a development with potential implications for the development of weapons of mass destruction
, alongside North Korea’s nuclear weapons, new Russian cruise missiles, and undeclared chemical weapons in Syria.

Crispr is currently the most popular gene-editing method and has been revolutionizing scientific research. It is a unique technology that enables geneticists and medical researchers to edit parts of the genome by cutting out, replacing, or adding snippets to the DNA sequence. While genome editing itself is not a new process, older techniques are more difficult, less accurate, and quite expensive. The Crispr system is faster, more reliable, and cheaper. (The basic ingredients can be bought online for approximately $60.) The low cost and increased availability of these techniques have policymakers concerned that they could be used by individuals or groups with limited expertise and a lack of knowledge of safety and security precautions—or, even worse, by sub-state groups seeking to produce an enhanced pathogen to inflict harm on civilian populations.

Given the speed at which science and biotechnology are advancing, more effective arrangements are needed to present, digest, and discuss relevant developments—including Crispr and others—and their implications for the BWC. There are already inherent challenges in meaningfully addressing science and technology in a diplomatic meeting, and the current process only exacerbates these difficulties rather than providing effective workarounds.

Incorporating expert input.

Other international agreements, such as the Chemical Weapons Convention, have permanent advisory boards to track and respond to scientific change; the BWC, however, does not have a dedicated process to inform and advise member states. The Review Conference only occurs once every five years, so it cannot ensure timely consideration of scientific advances. Furthermore, the Review Conference must accomplish a myriad of other objectives, leaving insufficient meeting time to do justice to science and technology issues.

The most recent intersessional process added a Standing Agenda Item on developments in science and technology to the BWC’s annual Meeting of Experts, which has meant that, at the very least, treaty members will discuss relevant developments once a year. But even at the experts’ meeting, the latest developments are still getting lost in the general work of the BWC, and there is no opportunity for the experts’ conversations to be fed back into the policy process. What’s more, many countries do not show up to the Meeting of Experts, so they remain uninformed about new developments—and potential policies to deal with them. Treaty members should take action at the Review Conference to replace the current ad hoc process with a separate, structured, expert-led regime that will allow for the continuous monitoring and evaluation of developments in science and technology relevant to the BWC.


A stronger framework.

The Eighth Review Conference not only provides an opportunity to establish a stronger, more strategic scientific review process, but also offers a platform to revamp the intersessional process and institutional structures more broadly. Again, this is important because review conferences are not frequent enough to accomplish the laundry list of important objectives. Treaty members will have to think about new intersessional meetings, what format they should take, and which topics they should cover.

The countries that are part of the BWC will also have to consider the future of the Implementation Support Unit, because its mandate will expire next year. That unit is tasked with enormous responsibilities that far exceed the capabilities of its three-person staff: helping nations implement the treaty, providing support and assistance for confidence-building measures, administering a database of assistance requests and offers, and facilitating exchanges of information, to name just a few of its duties. It is high time for the Implementation Support Unit to be expanded.

The way in which discussions are planned and held should be restructured, with a stronger steering body and increased time for preparation and multilateral engagement. Adding more meetings, and limiting what gets discussed at each of those meetings, would allow the BWC to begin operating more like an international organization and would provide oversight equivalent to that for other nonproliferation treaties.

While the norm embodied in the BWC remains strong, the international community must go beyond raising awareness and toward more specific understandings about what countries should do to enhance the strength and influence of the treaty. Establishing a more strategic science and technology advisory process and strengthening the intersessional process and institutional structures are sound places to start.

Editor's note: A correction was made to this article to clarify that the treaty itself will not be restructured, but rather that the way in which treaty discussions are planned and held should be restructured.


here,...

It’s time to modernize the bioweapons convention
by Gregory D. Koblentz, Filippa Lentzos
Bulletin of the Atomic Scientists
November 4, 2016

On November 7, the Eighth Review Conference of the Biological Weapons Convention will commence in Geneva. Convened every five years, these meetings are an important opportunity to take stock of the treaty and its contribution to the global biosecurity regime.

The bioweapons convention is the cornerstone of the bioweapons nonproliferation regime. Together with the 1925 Geneva Protocol, it upholds a complete ban on the development, production, and use of biological weapons. The norm against these weapons is exceptionally strong. No state openly admits to pursuing a biological weapons capacity, and membership in the treaty continues to grow. Yet while the convention is not failing, it is not flourishing either. It lacks a dedicated forum to assess treaty implications of scientific advances, a robust institutional capacity, organized means of helping member nations meet their obligations, provisions for verifying compliance, and an operational role to respond in cases of a serious violations. The upcoming review conference provides a welcome opportunity to begin rectifying some of these shortcomings.

The risk of irrelevance.

The review of science and technology has been a standing agenda item of the treaty’s intersessional meetings over the last four years. While this sustained focus was a marked improvement, the overall experience has been disappointingly uneven. Despite rapid scientific and technological advances that have lowered the “barriers to acquiring and using a biological weapon,” the bioweapons convention has been unable to provide a forum where crucial contemporary debates about new developments—including gain-of-function experiments, potential pandemic pathogens, Crispr and other genome editing technologies, gene drives, and synthetic biology—can take place internationally. Many organizations and governments recognize the need for reform. The InterAcademy Partnership of national science academies has been particularly active in developing ideas and facilitating discussions on science and technology review, and a number of states, including Finland, Norway, Sweden, Spain, Switzerland, Russia, the United Kingdom, and the United States, have put forward concrete suggestions for how to improve the review process, but major disagreement remains on the purpose, structure, membership, and funding of the science advisory group.

And it is not just relevant scientific debates that are taking place elsewhere. The center of efforts to prevent biological terrorism and the spread of bioweapons is starting to shift away from the convention toward UN Security Council Resolution 1540. First approved in 2004, this measure imposes an obligation on all UN members to improve their legal authorities and bureaucratic capacities to prevent non-state actors from acquiring, developing, or using nuclear, biological, and chemical weapons. While the bioweapons treaty provides one of the foundations for 1540’s mandate, the resolution appears to be becoming the preferred international vehicle for enhancing biosafety, biosecurity, export controls, and the criminalization of biological weapons. This situation is due in large part to the stronger political backing and larger administrative capacity devoted to the implementation of 1540. While the convention’s administrative body, the Implementation Support Unit, has a staff of three that reports to the UN Office of Disarmament Affairs, the 1540 Committee is composed of diplomats from 18 nations, is supported by a group of nine experts on loan from their home countries, and reports to the Security Council. While the overall bioweapons nonproliferation regime has benefited greatly from 1540, without a major influx of resources to the treaty’s implementation unit, the original mission of the regime risks becoming relegated to better-funded organizations.

Such a shift would also have ramifications for the way in which the convention reaches out to stakeholders—from scientists and science academies, health professionals and first responders, to members of humanitarian organizations, academia, and the private sector—and incorporates them into discussions about biological risk management. Because the 1540 Committee is focused primarily on nuclear proliferation, it concentrates on reducing material- and equipment-based threats, privileges legal tools such as criminalization and export controls, and engages with stakeholders at arm’s length. While that approach makes sense for the 1540 Committee, given the resolution’s origin as a response to the September 11 terrorist attacks and revelations about the A. Q. Khan nuclear proliferation network, it is not comprehensive enough for the biological field, where arms control and nonproliferation efforts are primarily about the ongoing management of a knowledge-based risk. Hence the need for the bioweapons convention to regain its rightful place as the premier international forum for countering biological terrorism and proliferation, a need that can best be met by giving the treaty’s implementation unit more funding and resources.

Finally, the review conference should also address the issue of transparency, which is an important tool for reassuring members of one another’s compliance with treaty obligations. The last two decades have seen a dramatic increase in biodefense activities and the number of facilities and researchers working with dangerous pathogens around the world. This has generated a number of trade-off risks related to safety, security, responsible science, and particularly transparency. A major risk here is that these expanding activities could be used as a cover for an offensive bioweapons program, or could be perceived as such. This, in turn, can provide other states with a justification for initiating or continuing offensive biowarfare programs. Only by encouraging trust and transparency among its members can the treaty hope to prevent such an escalation.

Making reforms work.

In anticipation of the Eighth Review Conference, the Biodefense Graduate Program at the Schar School of Policy and Government, at George Mason University, and the Department of Global Health & Social Medicine, at King’s College London, convened a small roundtable of academics, policy makers, and former government officials from the United States and the United Kingdom to consider the state of the bioweapons convention and the challenges it is facing. Three strong themes, discussed above, emerged from the talks: adapting to advances in biology and the life sciences, countering treaty marginalization, and increasing the transparency of biodefense programs. It is imperative for the review conference to take concrete steps to address these shortcomings.

First, members should decide to organize the review of relevant developments in science and technology more systematically, and resource it more fully, through an Open-Ended Working Group on Science and Technology supported by additional dedicated staff assigned to the Implementation Support Unit. The working group should be composed of experts nominated by governments and supplemented by specialists from academia, civil society, and industry, and it should regularly review advances in science and technology and assess potential impacts (both positive and negative) on the objectives of the bioweapons convention. The rapid pace of scientific innovation and unexpected breakthroughs, such as the recent discovery of the gene-editing tool Crispr, argue for a flexible approach that can draw on a wide range of expertise as needed. The working group should also be empowered to produce recommendations to member states.

Second, the review conference needs to renew the mandate of its implementation unit, and more importantly provide it desperately needed resources to expand its size and give it a realistic operating budget. Five years ago the Seventh Review Conference added new tasks to the unit but, at the last minute, refused to pay for them. As a result, the unit has had to draw attention, in each of its annual reports since 2012, to the work it has not been able to do, for lack of resources. Increasing the staff of the unit by two positions, including staff dedicated to overseeing the science and technology process, is a reasonable proposition. A better budget would still only ask treaty members to contribute less than 5 percent of what member nations are required to give the Organization for the Prohibition of Chemical Weapons, the inspection agency of the Chemical Weapons Convention. Even allowing for major differences between the two conventions in terms of institutional capacity and international verification activities, this is disproportionate. Running the bioweapons convention on an inadequate budget sends a terrible message about how seriously its members regard the treaty as part the bioweapons nonproliferation regime, not to mention how seriously they prioritize implementation.

Finally, treaty members should set up an Open-Ended Working Group on Providing Reassurance to encourage transparency and participation in “peer review” exercises to reassure one another that biodefense programs are in full compliance with the convention. Unusually for an arms control treaty, the bioweapons convention was agreed to without a system for routine on-site verification activities. Efforts to introduce a legally binding verification mechanism for the treaty have failed in the past, and developments in the political, security, and scientific contexts are making it increasingly clear that a fully effective verification system, or for that matter absolute certainty about the full compliance of treaty members, is exceptionally difficult.

Yet this does not mean that it is impossible for states to be assured that other nations are abiding by their treaty obligations. There are a number of actions and activities that cumulatively may give a reasonable indication of a member nation’s compliance status over time. Most states with biodefense programs recognize their special responsibility to ensure high standards of transparency. They submit declarations about their programs, as required under the treaty’s confidence-building measures, to reassure other states that their activities are solely for peaceful purposes. To maximize their transparency, an increasing number of states (as of this year, 18 of the 29 members with declared biodefense programs) are now also making their declarations publicly available. Recently, a small number of states, including France, Germany, Belgium, and the Netherlands, have voluntarily gone even further by inviting experts from other states, including non-government experts, to their biodefense facilities for interactive information exchanges and on-site visits. These innovative peer-review exercises are designed to provide reassurance through transparency and must be strongly endorsed at the Eighth Review Conference. It is through these sorts of initiatives that member nations can develop common understandings of how best to reassure one another, and the wider world, that their biodefense activities serve “prophylactic, protective and other peaceful purposes” and therefore are permitted by the treaty.

The Eighth Review Conference provides an opportunity to revitalize the bioweapons treaty by taking concrete actions to expand its relevance, enhance its capacity to review developments in science and technology, and strengthen the confidence of nations in the peaceful intentions of their fellow treaty members. These proposed measures will also enable the regime to play a leading role in the global dialogue on preventing the misuse of biology. The repeated use of chemical weapons by Syria and the Islamic State should serve as a stark reminder about the importance of ensuring that advances in the life sciences—which have the potential to create weapons exponentially more dangerous than chlorine barrel bombs—are not exploited by states or non-state actors for hostile purposes.


[url]here[/url], here,...

Biological Weapons Review Conference: ICRC statement
by Christine Beerli, vice-president of the ICRC
International Committee of the Red Cross
November 8, 2016

Eighth Review Conference of the States Parties to the Convention on the Prohibition of the Development, Production and Stockpiling of Bacteriological (Biological) and Toxin Weapons and on their Destruction, Statement by Christine Beerli, vice-president of the ICRC.

Poisoning and the deliberate spread of disease are unacceptable in any circumstances, and we must do everything possible to ensure that the life processes at the core of human existence are never manipulated for hostile purposes.


Society has long rejected poisoning and the deliberate spread of disease as abhorrent means of warfare. The prohibition of the use of biological weapons -– embodied in the 1925 Geneva Protocol and the Biological and Toxin Weapons Convention (BWC) -– is a rule of customary international humanitarian law. It is binding on all parties to all armed conflicts, be they States or non-State armed groups. The ban is absolute and far-reaching, covering everything from the hostile use of biological agents by individuals or groups for criminal or terrorist ends, to the penal sanctions that States Parties are required to impose nationally.

As emphasized in the final documents of past Review Conferences, and especially in light of continuing scientific developments, the absolute prohibition on use of biological weapons ‒- encompassing all biological agents, whatever their origin -– must be reaffirmed by this Review Conference.


States Parties should not become complacent; it remains their collective and individual responsibility to ensure that the treaty is implemented effectively. Over the past five years of annual meetings, a great deal of information has been shared and many proposals have been made on how to implement the treaty and improve its effectiveness. Disappointingly, however, there has been little collective agreement.

The International Committee of the Red Cross (ICRC) urges States Parties to seize the opportunity of this Review Conference to agree on concrete and practical measures, including an effective programme of work for 2017 and beyond, to reduce the risks to life and health posed by biological weapons and, ultimately, protect humanity from the horrific effects of these weapons.

We have only to consider the devastating impact that outbreaks of diseases, such as Ebola, have had on public health, economic well-being, and national and international security to appreciate how important it is to prevent the deliberate, and even accidental, spread of disease.

Meanwhile, scientific and technological advances could make biological weapons cheaper to obtain, easier to use, deadlier in their effects and harder to detect. Scientists have pointed out that, in the five years since the last Review Conference, the technological barriers to developing and using biological weapons have been significantly lowered.

The ICRC proposes five concrete actions to strengthen the prohibition of biological weapons ‒- many of them contained in the working papers submitted by States Parties -‒ that should be taken as a result of this Review Conference.

First, States Parties should develop effective means to monitor and assess compliance with the BWC. Fifteen years after negotiations on a verification protocol failed, this fundamental issue deserves renewed attention. It is now time to explore the full range of ideas on and approaches to compliance monitoring. As a first step, the ICRC encourages this Review Conference to establish a working group -– or similar process –- to take this issue forward from 2017.

Second, States Parties must remain prepared to respond and assist each other in the event that biological weapons are used. Shared efforts to increase preparedness should focus on enhancing capabilities to assist victims of any such attack.

Practical support is therefore crucial to ensuring that the measures under Article VII on the provision of assistance are implemented. This Review Conference should establish a working group -– or similar process –- to agree on how to build up response capacity where it is lacking, improve coordination among those who may be involved, address current obstacles to providing an effective response and, ultimately, limit the repercussions in humanitarian terms of any use of biological weapons.

The ICRC has in the past drawn attention to the lack of international capacity to assist victims in the event biological weapons are used. The challenges made evident by the international humanitarian response to the outbreak of Ebola from 2014 to 2016 underscore the urgent need for progress in this area. Lessons learned from this natural outbreak can be used to improve the capacity to respond in a deliberate attack, as outlined in Working Paper 39, submitted by the ICRC to the August Preparatory Committee.

Third, the ICRC urges this Review Conference to establish an effective mechanism for assessing the implications of developments in science and technology for the BWC. States Parties must remain up to date with fast-moving scientific and technological developments and their potential risks in order to prevent the development and use of biological weapons while ensuring that biological research for peaceful and beneficial purposes remains unhindered.

Fourth, States Parties must continue their efforts to promote universal ratification or accession to the BWC. There is no reason why any State should not be party to the treaty. The ICRC welcomes the four new States Parties for 2016, Côte d'Ivoire, Angola, Liberia and Nepal and we urge all States that have not yet done so to ratify or accede to the BWC without delay. We also call on States still holding reservations to the Geneva Protocol to withdraw them.

Fifth, sustained effort is needed on effective domestic implementation of the treaty. Legally, as well as for public-health and security reasons, States Parties must ensure that their domestic laws reflect international obligations, and that appropriate biosafety, biosecurity, export-control and enforcement measures are in place. Because this is such a key area, the ICRC convened a meeting in early October of this year to facilitate sharing of best practices among government experts in the South Asia region.

Poisoning and the deliberate spread of disease are unacceptable in any circumstances, and we must do everything possible to ensure that the life processes at the core of human existence are never manipulated for hostile purposes.

In joining the BWC, States Parties have made a solemn commitment “for the sake of all mankind, to exclude the possibility of bacteriological (biological) agents and toxins being used as weapons”. The world will be watching closely to see whether this commitment will be translated into action.


and here) 17,18,19, 20,21 call for the Parties to intensify their focus on new science and technology that could lead to violations of the BWC. Lab-created PPPs, particularly matHPAI, because they are already present in laboratories around the world, are an urgent focus.

Article XII of the BWC calls for


“review [of] the operation of the Convention…assuring that the purposes of the preamble and the provisions of the Convention…are being realized. Such review shall take into account any new scientific and technological developments relevant to the Convention.”


Hopefully, the States Parties to the BWC will set in motion a process for overseeing relevant new research and technologies. If the Parties decide lab-created PPPs are within its mandate under Article XII of the BWC, it could speed up the enactment of guidelines and regulations. At the very least, the Parties should be the catalyst to launch discussions for a different international treaty on oversight and regulation of creation and research on highly dangerous agents. In the meantime, since enacting new treaties is an uncertain and long process, Parties to the BWC should pass legislation in their own nations.

_______________

Notes:

1 Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell EM, Bestebroer TM, Burke DF, Smith DJ, Rimmelzwaan GF, Osterhaus AD, Fouchier RA. Airborne transmission of influenza A/H5N1 virus between ferrets. Science. 2012 Jun 22;336(6088):1534-41. doi: 10.1126/science.1213362

2 Masaki Imai, Tokiko Watanabe, Masato Hatta, Subash C. Das, Makoto Ozawa, Kyoko Shinya, Gongxun Zhong, Anthony Hanson, Hiroaki Katsura, Shinji Watanabe, Chengjun Li, Eiryo Kawakami, Shinya Yamada, Maki Kiso, Yasuo Suzuki, Eileen A. Maher, Gabriele Neumann & Yoshihiro Kawaoka. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature. 2012 May 2;486(7403):420-8. doi: 10.1038/nature10831

3 Fouchier RA, Kawaoka Y, Cardona C, Compans RW, García-Sastre A, Govorkova EA, et al. Gain of-function experiments on H7N9. Science. 2013 Aug 9;341(6146):612-3. doi: 10.1126/science.341.6146.612

4 Fouchier RA, Kawaoka Y, Cardona C, Compans RW, Fouchier RA, García-Sastre A, et al. Avian flu: gain-of-function experiments on H7N9. Nature. 2013 Aug 8;500(7461):150-1. doi: 10.1038/500150a.

5 Klotz LC. The Potential Pandemic Influenza Research Enterprise. https://armscontrolcenter.org/wpcontent ... ersion.pdf

6 Panel on Scientific Communication and National Security. Committee on Science, Engineering, and Public Policy: National Academy of Sciences, National Academy of Engineering. Institute of Medicine. Scientific Communication and National Security, NATIONAL ACADEMY PRESS Washington, D.C. 1982

7 Relman DA. "Inconvenient truths" in the pursuit of scientific knowledge and public health. J Infect Dis. 2014 Jan 15;209(2):170-2. doi: 10.1093/infdis/jit529. Epub 2013 Oct 7.

8 Koblentz GD. The De Novo Synthesis of Horsepox Virus: Implications for Biosecurity and Recommendati for Preventing the Reemergence of Smallpox. Health Secur. 2017 Aug 24. doi: 10.1089/hs.2017.0061. [Epub ahead of print]

9 Klotz LC1, Sylvester EJ. The consequences of a lab escape of a potential pandemic pathogen. Front Public Health. 2014 Aug 11;2:116. doi: 10.3389/fpubh.2014.00116

10 Lipsitch M1, Cohen T, Cooper B, Robins JM, Ma S, James L, Gopalakrishna G, Chew SK, Tan CC, Samore MH, Fisman D, Murray M. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003 Jun 20;300(5627):1966-70. Epub 2003 May 23. See Figure 4a.

11 Merler S, Ajelli M, Fumanelli L, Vespignani A. Containing the accidental laboratory escape of potential pandemic influenza viruses. BMC Med. 2013 Nov 28;11:252. doi: 10.1186/1741-7015-11-252.

12 The yearly probability of a natural pandemic may be estimated as follows: The number of years that have passed since the beginning of 1920 until September 8, 2017 = 97.77 years. (The proper starting date is 1920, just after the first pandemic, the 1918 pandemic flu. Any other starting date would be arbitrary.) There have been three pandemics since 1920: 1957, 1968 and 2009. Thus, the probability of a pandemic in any one year is (3 pandemics) / (97.7 years) = 0.031 per year. In ten years, the probability of a natural pandemic is about 10 x 0.031 = 0.31 or 31%.

13 Berns KI1, Casadevall A, Cohen ML, Ehrlich SA, Enquist LW, Fitch JP, Franz DR, Fraser-Liggett CM, Grant CM, Imperiale MJ, Kanabrocki J, Keim PS, Lemon SM, Levy SB, Lumpkin JR, Miller JF, Murch R, Nance ME, Osterholm MT, Relman DA, Roth JA, Vidaver AK. Policy: Adaptations of avian flu virus are a cause for concern. Nature. 2012 Jan 31;482(7384):153-4. doi: 10.1038/482153a.

14 Berg P. The dual-use conundrum. Science. 2012 Sep 14;337(6100):1273. doi: 10.1126/science.1229789.

15 Convention on the Prohibition of the Development, Production and Stockpiling of Bacteriological (Biological) and Toxin Weapons and on Their Destruction. Signed at London, Moscow and Washington on 10 April 1972. Entered into force on 26 March 1975. Depositaries: UK, US and Soviet governments

16 Leitenberg M, Leonard J, Spertzel R. Biodefense crossing the line. Politics Life Sci. 2003 Sep;22(2):2-3. Epub 2004 May 17. https://www.cambridge.org/core/journals ... D2AF95A329

17 Tarini G. Keeping the Biological Weapons Convention relevant. Bulletin of the Atomic Scientists, 1 November 2016

18 Lentzos F and Koblentz GD. It’s time to modernize the bioweapons convention. Bulletin of the Atomic Scientists, 4 November 2016

19 Koblentz G and Lentzos F. 21st century biodefence: Risks, trade-offs & responsible science. ILPI Weapons of Mass Destruction Project, International Law and Policy Institute

20 Beerli C. Biological Weapons Review Conference: ICRC statement. International Committee of the Red Cross, 08 November 2016

21 Meier O, Governance or Arms Control? The Future of the Biological and Toxin Weapons Convention. Global Memo, Council of Councils Oct 26, 2016
admin
Site Admin
 
Posts: 36172
Joined: Thu Aug 01, 2013 5:21 am

Re: U.S. government gave $3.7 million grant to Wuhan lab at

Postby admin » Mon Aug 03, 2020 2:59 am

The consequences of a lab escape of a potential pandemic pathogen
by Lynn C. Klotz, The Center for Arms Control and Non-Proliferation, Washington, DC, USA; and Edward J. Sylvester, Science and Medical Journalism, Walter Cronkite School of Journalism and Mass Communication, Arizona State University, Phoenix, AZ, USA
Frontiers in Public Health
August 11, 2014

NOTICE: THIS WORK MAY BE PROTECTED BY COPYRIGHT

YOU ARE REQUIRED TO READ THE COPYRIGHT NOTICE AT THIS LINK BEFORE YOU READ THE FOLLOWING WORK, THAT IS AVAILABLE SOLELY FOR PRIVATE STUDY, SCHOLARSHIP OR RESEARCH PURSUANT TO 17 U.S.C. SECTION 107 AND 108. IN THE EVENT THAT THE LIBRARY DETERMINES THAT UNLAWFUL COPYING OF THIS WORK HAS OCCURRED, THE LIBRARY HAS THE RIGHT TO BLOCK THE I.P. ADDRESS AT WHICH THE UNLAWFUL COPYING APPEARED TO HAVE OCCURRED. THANK YOU FOR RESPECTING THE RIGHTS OF COPYRIGHT OWNERS.


In letters to the journals Science and Nature (1, 2), 22 virologists notified the research community of their interest in expanding research to develop strains of the already deadly H7N9 Asian influenza virus that would be transmissible via aerosols among mammals, thus creating potential pandemic pathogens. PPPs are defined as pathogens that are potentially highly contagious, potentially highly deadly, and not currently present in the human population. Mammalian contagious avian flu, the 1918 pandemic flu, and SARS are examples. The letter writers cite their scientific reasons for the need for such research, much the same reasons as given by those working on similar projects for the H5N1 avian flu virus (3, 4). This new proposed research signals wider interest in making dangerous influenza viruses (5, 6) contagious in mammals via respiratory aerosols. At present, there are no international regulations or guidelines in place to decide whether such a research project should proceed.

Now is the time to address the next critical question: what is the likelihood that one of these viruses will escape from a lab and seed the very pandemic the researchers claim they are trying to prevent? As we shall estimate, that probability could be as high as 27%, a risk too dangerous to live with.

First, from the calculations in two in-depth pandemic risk analyses (7–9), there is a substantial probability that a pandemic with over a 100-million fatalities could be seeded from an undetected lab-acquired infection (LAI), if a single infected lab worker spreads infection as he moves about in the community. From the Klotz (2014) analysis, there is about a 1–30% probability, depending on assumptions, that, once infected, the lab worker will seed a pandemic. This large probability spread arises from varying the average number of people infected by an infected person between 1.4 and 3.0 (R0, in standard epidemiology notation), varying the details of commutes to and from work on public transportation, and whether infected acquaintances are quarantined before spreading infection. The Merler (2013) study, based on a computer-generated population grid of size and varying density of the Netherlands, supports our concern over a lab escape not being detected until it is too late: “there is a non-negligible probability (5–15%), strongly dependent on reproduction number and probability of developing clinical symptoms, that the escape event is not detected at all.”

Different methodologies were used in the Klotz (2014) and Merler (2013) risk analyses. Additional analyses are needed using other methodologies, such as the mathematical model employed for SARS (10), which hopefully will lead to some consensus on risk. The Klotz and Merler studies, however, are the first to raise these concerns and point to valid issues about the potential risks from a single LAI.

Given such a dire predicted outcome by the existing studies, the critical question is: what is the probability that a worker acquires an undetected infection in the lab in the first place? To answer this question, we reproduce here one part of the Klotz (2014) analysis: the probability of an escape through an LAI from at least one of the many labs expected to be involved in this research enterprise.

A 2013 Centers for Disease Control report is a significant source of recent data on LAIs (11). The report documents four undetected or unreported LAIs in registered US Select Agent, high-containment BSL-3 labs between 2004 and 2010. An undetected or unreported LAI implies an escape when the infected person leaves the lab. The report identifies an average of 292 registered Select Agent BSL-2, BSL-3, and BSL-4 labs operating over those 7 years, for a total of 292 × 7 = 2,044 lab years. Unfortunately, the study does not break down numbers into BSL-2, BSL-3, and BSL-4 labs or lab years.

Thus, the probability of escape for a single year, p1, can only be calculated as 4 LAIs/2,044 lab years = 0.002 or 0.2% per lab per year. This is clearly an underestimate since BSL-2 and BSL-4 labs contribute to the denominator. (The denominator used here, 2,004, equals the number of BSL-2 plus number of BSL-3 plus number of BSL-4 labs. But the denominator in our calculation should be just the number of BSL-3 labs, so the denominator is overestimated and the percent escape is then underestimated. Although requested, the CDC has not supplied us with the number of BSL-3 labs for us to do the exact calculation.) This basic probability is consistent with that for SARS escapes in Asia through LAIs (12) and with all known escapes from BSL-4 labs in the Soviet Union from LAIs and Great Britain from a mechanical failure (13).

To illustrate potential risk, the probability of no escape from a single lab in a single year is (1 − p1), so

pno=(1− p1)N × Y (1)


is the probability of no escape from N labs in Y years. And

pat least one= 1−(1− p1)N×Y (2)


is the probability of at least one escape from N labs in Y years.

Given the Science and Nature articles listed above (1, 2), it is reasonable to assume that at least 10 labs will undertake this research and that this work would continue for 10 years, so

pat least one= 1−(1−0.002)10×10= 0.18 (3)


or an 18% likelihood of at least one escape from at least one lab for the whole research enterprise, almost 100-times greater than the likelihood for a single lab in a single year.

We noted above that the probability p1 = 0.2% is conservative, estimated from the CDC data alone. The first Department of Homeland Security risk assessment for the planned National Bio- and Agro-Defense Facility in Manhattan, Kansas estimated a significantly higher escape risk, over 70% likelihood for the 50-year life of the facility (14), which works out to be a basic probability of escape, p1 = 2.4% per year. The National Research Council (14) overseeing the risk assessment remarked “The … estimates indicate that the probability of an infection resulting from a laboratory release of FMDv from the NBAF in Manhattan, Kansas approaches 70% over 50 years (see Figure 3-1) with an economic impact of $9–50 billion. The committee finds that the risks and costs could well be significantly higher than that…” While the DHS subsequently lowered the escape risk to 0.11% for the 50-year lifetime (14), the NRC committee (14) was highly critical of the new calculations: “The committee finds that the extremely low probabilities of release are based on overly optimistic and unsupported estimates of human error rates, underestimates of infectious material available for release, and inappropriate treatment of dependencies, uncertainties, and sensitivities in calculating release probabilities.” We have more trust in the NRC committee conclusions, as they have no skin in the game.

With this higher number, which we take as a worst-case scenario, the likelihood of at least one escape from 10 labs in 10 years becomes 91%, almost a certainty.
It follows that, if the likelihood of one LAI leading to a pandemic is 30% in the worst-case scenario, the likelihood of an LAI-caused pandemic resulting from this whole research enterprise could be as high as 30 × 91% = 27%, a likelihood that is too dangerous to live with, as we noted. While this represents a worst-case scenario, it is not improbable.

Recent self-reported mistakes at the CDC (15), involving a particularly deadly strain of anthrax removed from BSL-3 containment and H5N1 Asian bird flu released from the CDC laboratories altogether, lend support to our concern that the probability of escape may be much greater than the 0.2% per lab per year from just LAIs. The CDC report spawned a congressional inquiry (16) and led to dozens of newspaper articles with concerns about lack of safety in high-containment laboratories.

Our concern is shared by many virologists and epidemiologists. A recent letter to the President of the European Commission (17) co-signed by 56 scientists from more than a dozen countries warned, “The probabilities of a lab accident that leads to a global spread of an escaped mutated virus are small but finite, while the impact of global spread could be catastrophic.”
The European Centre for Disease Prevention and Control (18) weighed-in with its concerns as well, as did the Cambridge Working Group (19). It must be noted that some of the signers of the European Commission letter and the Cambridge Working Group’s consensus statement are the same.

The risk of a man-made pandemic from a lab escape is not hypothetical. Lab escapes of high-consequence pathogens resulting in transmission beyond lab personnel have occurred (20, 21). The historical record reveals lab-originated outbreaks and deaths due to the causative agents of the 1977 pandemic flu, smallpox escapes in Great Britain, Venezuelan equine encephalitis in 1995, SARS outbreaks after the SARS epidemic, and foot and mouth disease in the UK in 2007. Ironically, these labs were working with pathogens to prevent the very outbreaks that they ultimately caused.

Do benefits outweigh risks? Those who support PPP experiments either believe the probability of PPP escape is infinitesimal or the benefits in preventing a pandemic are great enough to justify the risk. In making decisions for what lines of research will lead to new knowledge, experts must rely on intuition honed by years of research in a particular field. In the case of this PPP research, in our opinion it would take extraordinary benefits and significant reduction of risk via extraordinary biosafety measures to correct such a massive overbalance of highly uncertain benefits to too-likely risks (Wain-Hobson, 2013).

Whatever number we are gambling with, it is clearly far too high a risk to human lives. This Asian bird flu virus research to develop strains transmissible via aerosols among mammals, and perhaps some other PPP research as well, should for the present be banned. We must emphasize that we have been considering only a very small subset of pathogen research. Most pathogen research should proceed unimpeded by unnecessary regulations.

Special precautions in BSL-4 laboratories for work with PPPs should be adopted (22). These would include:

• Training a full-time technical staff for work with PPPs. Experiments could be directed by scientists outside the laboratory using modern audio-video technology.

• Requiring the staff to follow up extended work shifts with periods of quarantine before they leave the containment area to assure that no PPP escapes from the containment area through an LAI.

• Restricting these PPP laboratories to remote locations, where an aerosol escape or other containment failure would pose the least risk of infecting an outside community.

We label BSL-4 laboratories with the special precautions, BSL-4+. While PPP experiments would be carried out primarily under BSL-4+ containment, BSL-3 containment with the special precautions might suffice for some work.

Given the global threat, the international community should insist on discussions leading to an international agreement that would require the strictest oversight to conduct this particular research anywhere. To place responsibility with the international community where it belongs and to provide maximum transparency, policy makers should require that international inspectors have access to facilities at any time on short notice.

As it stands, there is no proactive oversight nor regulations for this PPP research, so any and all of the world’s nations can carry out this dangerous work without regard to consequences. But consequences would be shared by all of us. In the meantime, insurance companies who routinely provide insurance for biological research should consider excluding such risky research from coverage.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

1. Fouchier RA, Kawaoka Y, Cardona C, Compans RW, García-Sastre A, Govorkova EA, et al. Gain-of-function experiments on H7N9. Science (2013) 341:612–3. doi: 10.1126/science.1243325

2. Fouchier RA, Kawaoka Y, Cardona C, Compans RW, Fouchier RA, García-Sastre A, et al. Avian flu: gain-of-function experiments on H7N9. Nature (2013) 500:150–1. doi:10.1038/500150a

3. Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science (2012) 336:1534–41. doi:10.1126/science.1213362

4. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature (2012) 486:420–8. doi:10.1038/nature10831

5. Zhang Y, Zhang Q, Kong H, Jiang Y, Gao Y, Deng G, et al. H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science (2013) 340:1459–63. doi:10.1126/science.1229455

6. Sutton TC, Finch C, Shao H, Angel M, Chen H, Capua I, et al. Airborne transmission of highly pathogenic H7N1 influenza in ferrets. J Virol (2014) 88:6623–35. doi:10.1128/JVI.02765-13

7. Klotz LC. The Human Fatality and Economic Burden of a Man-made Influenza Pandemic: A Risk Assessment. The Center for Arms Control & Non-Proliferation (2014). Available from: http://armscontrolcenter.org/The_Human_ ... 1-5-14.pdf or http://bio-security.org/wp-content/uplo ... 1-5-14.pdf

8. Klotz L, Sylvester S. Opinion: The Fatality Burden. (2013). Available from: http://www.the-scientist.com/?articles. ... ty-Burden/

9. Merler S, Ajelli M, Fumanelli L, Vespignani A. Containing the accidental lab escape of potential pandemic influenza viruses. BMC Med (2013) 11:252. doi:10.1186/1741-7015-11-252

10. Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, et al. Transmission dynamics and control of severe acute respiratory syndrome. Science (2003) 300:1966–70. doi:10.1126/science.1086616

11. Henkel RD, Miller T, Weyant RS. Monitoring select agent theft, loss and release reports in the United States 2004-2010. Appl Biosafety (2012) 17:171–80. Available from: http://www.absa.org/abj/abj/121704FAHenkel.pdf

12. Specific Incidences of Lab-Acquired SARS-CoV Infections. Centers for Disease Control and Prevention (2005). Available from: http://www.cdc.gov/sars/lab/biosafety.html

13. Klotz LC. Sharpening Our Intuition on Man-made Pandemics. Breeding BioSecurity Blog (2012). Available from: http://bio-security.org/wp-content/uplo ... on0515.pdf

14. Evaluation of the Updated Site-Specific Risk Assessment for the National Bio- and Agro-Defense Facility in Manhattan, Kansas. The National Academies Press (2012). Available from: http://www.nap.edu/catalog.php?record_id=13418

15. Report on the Potential Exposure to Anthrax. Centers for Disease Control and Prevention (2014). Available from: http://www.cdc.gov/od/science/integrity ... Report.pdf

16. Review of CDC Anthrax Lab Incident. Energy & Commerce Committee, United States House of Representatives. (2014). Available from: http://energycommerce.house.gov/hearing ... dent#video

17. Wain-Hobson S. Response to Letter by the European Society for Virology on “Gain-of-Function” Influenza Research. The Foundation for Vaccine Research (2013). Available from: http://www.nature.com/polopoly_fs/7.145 ... letter.pdf

KNAW has invited two scientists who contributed to the debate on gain-of-function by writing a letter to the president of the EU-Commission, Mr Barroso. In his capacity as chairman of the European Society for Virology, professor Giorgio Palù, asked attention for the potential benefits of this kind of research. Professor Simon Wain-Hobson, chairman of the Foundation for Vaccine Research, responded with a letter undersigned by 56 other scientists -- that challenged the arguments in favour. In their opening statements both Dr Palù and Dr Wain Hobson will explain and elaborate their main arguments.

Following their presentations both speakers will –- for the first time -– have a debate with each other. Of course there will be attention for the more scientific aspects of gain-of-function research. However, the political and societal debate was not only –- and probably not even in the first place – on science, but even more on the security aspects. One of the reasons for the debate is the risk of bioterrorism: the creation of a pandemic by terrorists having the knowledge and the biological agents. Since the attack with anthrax letters in the USA life scientists know -– or should know -– that this is a real issue of concern. How to deal with it, as science and as society?...

PRESENTATION SIMON WAIN-HOBSON

His main thesis for this debate is as follows: gain-of-function avian influenza research is frighteningly out of touch. The flu that worries us is that among humans. Influenza viruses are characterized by two kinds of proteins called H (hemagglutinin) and N (neuraminidase) at the surface of the virus that allow it to get into and out of cells. Human pandemics have been provoked by H1N1 (Spanish flu 1918, 1977 and 2009), H2N2 (Asian flu, 1957) and H3N2 viruses (Hong Kong flu, 1968). By contrast the greatest reservoir of influenza viruses is among ducks, birds and chickens and they rarely cross over to humans. Occasionally an epidemic of avian flu spills over to humans and can give rise to hundreds of H7N9 infections in man in a matter of months. Fortunately, these viruses are almost never transmitted from human to human. This is the same as with the rabies virus. Such dead end infections are not new in virology. The question is could these viruses become transmittable between humans and if so how? In modern virological parlance, what mutations are necessary to convert such a virus into a highly transmissible virus between ferrets, the animal of choice in influenza biology. This is the basis of the H5N1 projects of Fouchier and Kawaoka. As is now well known, they succeeded in doing this for the H5N1 virus and it involved a handful of mutations.

It should be emphasized that the conditions in a laboratory differ enormously from those in nature. Influenza virus evolution takes years, while in a laboratory there is a massive acceleration thanks to the selection of mutants by the virologist.
To illustrate this, suffice to say that for some reason nature has not yet succeeded in morphing any influenza virus into a major human pathogen other than H1N1, H2N2 and H3N2 in 100 years. Even the resurrection of the Spanish flu HIN1 virus did not help us to predict or prepare for the H1N1 flu pandemic of 2009.

This is one of the major scientific weaknesses in the so-called gain-of-function influenza research. We do not know if the experiments reflect what happens in nature. As an HIV expert he can say this because the lab is not a good template for what happens in the clinic. There are hundreds of possible trajectories and only a few can be tested in laboratory. One can never know which are the “right ones” – that can only be appreciated as being “right” once the pandemic has struck. As for obvious ethical reasons these experiments cannot be done in humans, an important objection to this work is that it is not falsifiable. This constitutes a real issue as science tries to solve problems, not to create them.

He gave two examples of quantum jumps in recent gain-of-function influenza research. An ostrich H7N1 virus was selected to become droplet transmissible between ferrets. It did not lose lethality -- three out of five animals died (Sutton et al., J Virology 88, 6623 (2014)). A 60% lethality rate is much greater than the 2% that characterized Spanish flu. We must realize that until now no case of H7N1 in humans has been reported, so it is no threat to humans. The world is becoming a more dangerous place by making the virus aerosol transmittable. The second example is an unpublished experiment from Dr Kawaoka. He engineered the human 2009 pandemic H1N1 virus to escape neutralization by convalescent sera. By doing this the virus escaped vaccine coverage. It needs no explanation that if there ever were a lab accident the consequences could be enormous because this virus is unquestionably transmissible between humans.

The benefits of this kind of research: Scientists are used to work with the probability of benefits versus risks, just as they are used to handling dangerous agents. One of the arguments in favour of this gain-of-function research is developing vaccines and drugs. GOF research has nothing to offer for making vaccines. Development of vaccines is a very time-consuming and expensive effort. Moreover, each strain of influenza virus would need its own vaccine. And as mentioned above there is a great number of possible strains. And as it cannot be predicted which strain will cause an epidemic, this kind of research does not have much utility. Developing and stockpiling these vaccines would cost an enormous amount of money. As for drugs the choice is binary: we must hope that the next pandemic strain is sensitive to available drugs and use them accordingly. If the strain is resistant, it will take too long for the new drugs to be tested -– by then the pandemic will be over.

Now the risks of gain-of-function research: There is always the risk of an accident. For a virus that the human system has never seen this could lead to millions of deaths. Wain-Hobson does not call this risk, but catastrophic risk. But there are also less catastrophic outcomes, e.g. the equivalent of a seasonal flu outbreak where mortality is less than a million. The economic burden of seasonal flu costs a lot of money (say $71-167 bn/year to US economy alone). What would be special in the event of release of a lab engineered virus is that it is genetically ‘barcoded’. It would be trivial to trace the origin. Massive liability claims would be sought for the unwarranted deaths and economic damage. Liability experts (e.g. from RAND corporation) say that this really could lead to claims of 100 billion dollars and more, an amount that no insurance company would be willing, or able, to pay. Liability of this magnitude would jeopardize the existence of private universities and institutions such as the Institut Pasteur or even Harvard.

Some scientists argue that there is not much guidance on these biosafety issues. Of course there is the Fink report of 2004 (NRC -- National Research Council (2004), Biotechnology Research in an Age of Terrorism. Washington DC: National Academies of Science). And there is the InterAcademy Panel 2007 Statement on Biosecurity. This statement has been signed by 76 Academies of Sciences, such as KNAW, Royal Society, Leopoldina and the US NAS. Basically this statement says that scientists have an obligation to do no harm (the Hippocratic oath). It also says that individual good conscience of scientists does not imply that one can ignore the possibility of misuse. However, many scientists do so. Scientists are responsible for the knowledge they produce and publish. The statement also refers to the necessity of oversight over the research. This certainly is relevant for funders but also journal editors should adhere to these principles in making their decisions on the publication of dual use research. Amazingly hardly anyone knows about this document. It is good to have such a statement, but it is important that people know about it! So, maybe there is not so much a lack of guidance, but a lack of good communication of that guidance. For the moment scientists effectively transfer their biosafety and biosecurity problems to journal editors who have to handle them at “5 minutes before midnight”.

From his point of view we should freeze on gain-of-function research, because not doing so means waiting for an accident. With this breathing space virologists can look for more coordination and cooperation in taking safety and security measures, because they are very divergent now. Very important –- and Giorgio Palù and Simon Wain-Hobson agree on this -– is having more debates with more stakeholders getting in; lawyers, defence experts, insurance companies, etc. We need more risk–benefit analysis, although with the disagreement among virologists, it seems hard to get an agreement on the benefits. For the moment learned societies, governments and funders do little to advance this field. They fund and support this research without taking care of risk or liability.

Wain-Hobson finishes with this statement: On 22 March 2012, Russian president-elect Vladimir Poutin [Putin] promised to develop new weapons based on advanced technologies, including genetics (Raymond Zilinskas, The Soviet biological warfare program and its uncertain legacy, Microbe v9, p151, 2014). Although the Soviet Union was one of the initiators and first signatories and depository state of the Biological and Toxin Weapons Convention, there are clear signals that they went on with research and development of biological weapons until 1990. It has never been verified, because that was not possible for political reasons. So, how do we understand this recent statement from Poutin [Putin]? Bluff or a serious warning?

Virology is hopelessly misguided in pursuing gain-of-function research. It will not lead help us predict or prevent influenza. Although virology has made great advances, it is a dream that is still years away. Indeed flu viruses may always be one step ahead of us precisely because they evolve to escape immunity to them. As long as that is the case debate is needed, among virologists, but also with experts from other fields.

-- Gain-Of-Function Research: Report of a Debate between Prof. Giorgio Palù and Prof. Simon Wain-Hobson, 25 June 2014, Trippenhuis, Amsterdam, by Koos van der Bruggen


18. Circulating Avian Influenza Viruses Closely Related to the 1918 Virus Have Pandemic Potential. European Centre for Disease Prevention and Control. (2014). Available from: http://ecdc.europa.eu/en/activities/sci ... d72&ID=765

Circulating Avian Influenza viruses closely related to the 1918 virus Have pandemic potential
by European Centre for Disease Prevention and Control
July 16, 2014

A recent article by Watanabe et al. in the Cell Host & Microbe journal describes an attempt to assess the risk of emergence of pandemic influenza viruses closely related to the 1918 influenza virus.

Reverse genetics methods were used to generate an avian influenza virus closely related to the 1918 influenza virus, based on sequence information reported from various avian influenza viruses. Further experiments were done to demonstrate what mutations are required for this virus to become easily transmissible between mammals. Effectiveness of the current influenza vaccine and the antiviral drug oseltamivir against the 1918-like influenza virus was also assessed.

It was experimentally demonstrated that a 1918-like avian influenza virus with a limited number of additional mutations exhibits relatively high pathogenicity in mammals, although lower than the original 1918 influenza virus strain that was also recreated with reverse genetics technology in the laboratory. In the transmissibility studies, only some constellations of the virus genes allowed transmissibility between ferrets, suggesting roles for RNA replication complex, HA and NA in virus transmission.

To further assess the risk of the emergence of such avian influenza viruses that could infect humans, the team examined the prevalence of avian influenza viruses that are similar to the 1918 influenza virus, and looked for avian influenza viruses possessing human-type amino acid residues.

The study thus demonstrated the continued circulation of such avian influenza viruses that possess 1918 virus-like proteins and viruses that may acquire 1918 virus-like properties. This would suggest that a potential exists for a 1918-like pandemic virus to emerge from the avian virus gene pool.

ECDC comment

The study by Watanabe et al. is the latest in a series of genetic engineering experiments where research groups have created influenza viruses of pandemic potential. The new study discussed here further confirms the power of recombinant technology to create pathogenic viruses that are not currently circulating in nature. From the public health perspective, this poses a risk both for the laboratory personnel working with these viruses, even in very secure biosafety conditions, and to the general public in case of a laboratory escape. Recent incidents remind us that laboratory accidents and laboratory escapes can happen with dangerous pathogens, even if the highest security standards are applied [1,2,3]. The developments in technology should not and cannot be stopped and research laboratories should have the freedom to apply the latest technologies for science purposes as long as this is done with full adherence to good ethical and biosafety practices. However, the decision to fund this type of gain of pathogenic function studies in influenza viruses and other human pathogens has stirred scientific controversy about the mechanisms currently in place to ensure sound assessment of risk and benefits by independent reviewers [4].

The public health perspective to the critical review of funding such dual-use research of concern including studies aiming at the creation of potential pandemic pathogens has been so far limited. Very often the research groups justify their research agenda with pandemic preparedness and better understanding of the avian influenza viruses without further specifying how exactly the results may improve the preparedness plans. It is important to ask what this type of result adds to the field of pandemic influenza preparedness and how the prediction of efficacy of influenza vaccines or antivirals against influenza viruses is improved based on these results. Furthermore, it is pertinent to ask for justification of the methods, and if any of those could be replaced by safer experiments. It is of utmost importance that the biosafety practices and controls in the laboratories undertaking such research are kept to a high standard. A forum for public health discussion around dual-use research of concern topics is not yet available at European level. ECDC advocates for open discussion about studies where potential pandemic threats are created. The research community should in all their work apply the medical ethical principle of “first do no harm”.


19. Cambridge Working Group Consensus Statement on the Creation of Potential Pandemic Pathogens (PPPs). Available from: http://www.cambridgeworkinggroup.org/

Cambridge Working Group Consensus Statement on the Creation of Potential Pandemic Pathogens (PPPs)
by cambridgeworkinggroup.org
July 14, 2014

Recent incidents involving smallpox, anthrax and bird flu in some of the top US laboratories remind us of the fallibility of even the most secure laboratories, reinforcing the urgent need for a thorough reassessment of biosafety. Such incidents have been accelerating and have been occurring on average over twice a week with regulated pathogens in academic and government labs across the country. An accidental infection with any pathogen is concerning. But accident risks with newly created “potential pandemic pathogens” raise grave new concerns. Laboratory creation of highly transmissible, novel strains of dangerous viruses, especially but not limited to influenza, poses substantially increased risks. An accidental infection in such a setting could trigger outbreaks that would be difficult or impossible to control. Historically, new strains of influenza, once they establish transmission in the human population, have infected a quarter or more of the world’s population within two years.

For any experiment, the expected net benefits should outweigh the risks. Experiments involving the creation of potential pandemic pathogens should be curtailed until there has been a quantitative, objective and credible assessment of the risks, potential benefits, and opportunities for risk mitigation, as well as comparison against safer experimental approaches.
A modern version of the Asilomar process, which engaged scientists in proposing rules to manage research on recombinant DNA, could be a starting point to identify the best approaches to achieve the global public health goals of defeating pandemic disease and assuring the highest level of safety. Whenever possible, safer approaches should be pursued in preference to any approach that risks an accidental pandemic.

Original Signatories & Founding Members:
(Founding Members met in Cambridge on July 14 and crafted the statement)

Amir Attaran, University of Ottawa
Barry Bloom, Harvard School of Public Health
Arturo Casadevall, Albert Einstein College of Medicine
Richard Ebright, Rutgers University
Nicholas G. Evans, University of Pennsylvania
David Fisman, University of Toronto Dalla Lana School of Public Health
Alison Galvani, Yale School of Public Health
Peter Hale, Foundation for Vaccine Research
Edward Hammond, Third World Network
Michael Imperiale, University of Michigan
Thomas Inglesby, UPMC Center for Health Security
Marc Lipsitch, Harvard School of Public Health
Michael Osterholm, University of Minnesota/CIDRAP
David Relman, Stanford University
Richard Roberts (Nobel Laureate '93), New England Biolabs
Marcel Salathé, Pennsylvania State University
Lone Simonsen, George Washington University
Silja Vöneky, University of Freiburg Institute of Public Law, Deutscher Ethikrat

Charter Members:
(Charter Members of the Cambridge Working Group endorse the statement)

Porter W. Anderson Jr (Lasker laureate '96), Harvard Medical School & University of Rochester
Roy Anderson, Imperial College London, UK
Rustom Antia, Emory University
Ann Arvin, Stanford University School of Medicine
Birgitta Åsjö, University of Bergen, Norway
John Bartlett, Johns Hopkins University School of Medicine
Patrick Berche, Necker-Enfants Malades Medical School, Paris, France
Paul Berg (Nobel laureate '80), Stanford University
Pamela Björkman, California Institute of Technology, Pasadena
Steven Black, Center for Global Health, Cincinnati Children's Hospital
Jesse D. Bloom, Fred Hutchinson Cancer Research Center
Sebastian Bonhoeffer, ETH Zürich, Switzerland
Michel Brahic, Department of Genetics, Stanford University School of Medicine
Christian Bréchot, Institut Pasteur, Paris
Sydney Brenner (Nobel laureate '02)
Roger Brent, Fred Hutchinson Cancer Research Center
John S. Brownstein, Harvard Medical School
Donald S. Burke, University of Pittsburgh
Dennis Burton , Scripps Research Institute, La Jolla
Donald Coen, Harvard Medical School
Vittorio Colizzi, University of Rome Tor Vergata, Italy
Larry Corey, Fred Hutchinson Cancer Research Center
Roel Coutinho, University Medical Center Utrecht, The Netherlands
Pascale Cossart, Institut Pasteur, France
Clyde S. Crumpacker, Beth Israel Deaconess Medical Center
Malcolm Dando, University of Bradford, UK
Norman Daniels, Harvard School of Public Health
Patrice Debré, Hôpital Pitié Salpetrière, Paris
Jonathan A. Eisen, University of California, Davis
Santiago Elena, CSIC, Spain
Max Essex (Lasker laureate '86), Harvard School of Public Health
Stanley Falkow (Lasker laureate '08), Stanford University School of Medicine
Michael Farzan, Scripps Research Institute, Miami
Marcus W. Feldman, Stanford University
Neil M. Ferguson, Imperial College, UK
Adam Finn, University of Bristol, UK
Christophe Fraser, Imperial College, UK
Julio Frenk, Harvard School of Public Health
José Gatell, Hospital Clínic, University of Barcelona, Spain
Gabriela Gomes, Instituto Gulbenkian de Ciencia, Portugal
Eric P. Goosby, University of California San Francisco
Nathalie Grandvaux, Université de Montréal, Canada
Warner C. Greene, Gladstone Institute of Virology and Immunology, University of California San Francisco
Jeanne Guillemin, MIT
Willem Hanekom, Bill & Melinda Gates Foundation, and University of Cape Town, South Africa
Elisa D. Harris, Center for International and Security Studies at Maryland
Eric Harvill, Pennsylvania State University
Daniel L. Hartl, Harvard University
Donald A. Henderson (Presidential Medal of Freedom '02), University of Pittsburgh
Martin S. Hirsch, Harvard Medical School
Richard Jackson, University of Cambridge
Laura H. Kahn, Princeton University
Phyllis Kanki, Harvard School of Public Health
Lynn Klotz, Center for Arms Control & Non-Proliferation
Keith Klugman, Bill & Melinda Gates Foundation
Roberto Kolter, Harvard Medical School
Mathilde Krim, Founding Chairman, amfAR, The Foundation for AIDS Research
Leonid Kruglyak, UCLA
Richard E. Lenski, Michigan State University
Matti Lehtinen, University of Tampere, Finland
Bruce R. Levin, Emory University
Gunnar Lindahl, Lund University, Sweden
W. Ian Lipkin, Columbia University
Ian M. Mackay, University of Queensland, Australia
Adel A. Mahmoud, Princeton University
Rick Malley, Boston Children's Hospital
Howard Markel, University of Michigan
Robert M. May (former president Royal Society), University of Oxford, UK
Mike McCune, University of California, San Francisco
Kenneth McIntosh, Boston Children’s Hospital
Andrew McMichael, University of Oxford
Andreas Meyerhans, ICREA & Universitat Pompeu Fabra, Barcelona, Spain
Julio S. G. Montaner, University of British Columbia
Jonathan D. Moreno, University of Pennsylvania
Richard Moxon, Oxford University, UK
Neal Nathanson, Microbiology, University of Pennsylvania
Kathryn Nixdorff, Darmstadt University of Technology, Germany
Kate O'Brien, Johns Hopkins Bloomberg School of Public Health
Paul Offit, The Children's Hospital of Philadelphia
Gérard Orth, Institut Pasteur, France
Eli Perencevich, University of Iowa
Joshua B. Plotkin, University of Pennsylvania
Stanley Plotkin, University of Pennsylvania
Peter Piot, London School of Hygiene & Tropical Medicine, UK
Mark Poznansky, Harvard Medical School, Massachusetts General Hospital
Andrew Rambaut, University of Edinburgh, UK
Johannes Rath, University of Vienna, Austria
Andrew Read, Pennsylvania State University
Gili Regev-Yochay, Sheba Medical Center, Israel
Félix Rey, Institut Pasteur, Paris, France
Douglas D. Richman, University of California San Diego
Steven L. Salzberg, Johns Hopkins School of Medicine
Philippe Sansonetti, Institut Pasteur, Paris
Mathuram Santosham, Johns Hopkins University
Mauro Schechter, Projeto Praca Onze, Universidade Federal do Rio de Janeiro, Brazil
Olivier Schwartz, Institut Pasteur, Paris, France
Jeffrey Shaman, Columbia University
Kai Simons, Max Planck Institute of Molecular Cell Biology & Genetics, Dresden, Germany
Stephen C. Stearns, Yale University
Tomoko Steen, Georgetown University Medical School
John Steinbruner, University of Maryland
Bruce Stillman, Cold Spring Harbor Laboratory
Klaus Stöhr, Novartis Vaccines and Diagnostics
Amalio Telenti, University of Lausanne, Switzerland
Paul Turner, Yale University
Robert D. Truog, Harvard Medical School
Ross Upshur, University of Toronto, Canada
Paul Volberding, AIDS Research Institute, University of California San Francisco
Mark Wainberg, McGill University, Montreal, Canada
Simon Wain-Hobson, Institut Pasteur, France
James D. Watson (Nobel laureate '62)
David Weiner, University of Pennsylvania
Robin Weiss, University College London, UK
Hans Wigzell, Karolinska Institutet, Stockholm, Sweden
Daniel Wikler, Harvard University
Claus O. Wilke, The University of Texas at Austin
Rüdiger Wolfrum, Max Planck Institute, Germany
Priscilla Yang, Harvard Medical School
Moshe Yaniv, Institut Pasteur, France
Patrick Yeni, Hôpital Bichat and University of Paris 7 Paris, France
Jerome A. Zack, David Geffen School of Medicine, University of California Los Angeles

Charter Members who signed the statement online:

Andrew Noymer, University of California, Irvine
Maimuna S. Majumder, MIT
Christopher McCabe, University of Alberta, Canada
Mike McCormick, Labwatch
Nicole E Basta, Princeton University
Steven Riley, Imperial College London
Ben Ashby, University of Exeter
Gautam I Menon, The Institute of Mathematical Sciences, Chennai, INDIA
Ted Cohen, Harvard School of Public Health
Toby Ord, Oxford University
Sean O hEigeartaigh, University of Oxford
Daniel Dewey, University of Oxford
Joann Mead, @JoannJMead
Christian Althaus, Institute of Social and Preventive Medicine (ISPM), University of Bern, Switzerland
Marius Gilbert, Université Libre de Bruxelles
Joshua S. Weitz, Georgia Institute of Technology
Charles N Haas, Drexel University
R. Taylor Raborn, Indiana University
Amy Greer, University of Guelph
Brett Edwards, University of Bath
Antoni Trilla, Hospital Clinic - Univ. of Barcelona
David S. Fedson, Sergy Haut, France
Hortense Gerardo, Lasell College
Joseph Baglieri, Barrister & Solicitor
Dawn Kubly, Fort Healthcare
Charles R. Stack, University of Illinois at Chicago School of Public Health
Lisa Murillo, Los Alamos National Laboratory
Anders Sandberg, Oxford University
Evan Skowronski, TMG Biosciences
Kathleen Gilbert, California Institute of Technology
Mukilan D Suresh, SRM University, School of Bioengineering (student)
Roberto Anitori, Clark College, WA, USA
Andrew Leifer, Princeton University
Pankaj Mehta, Boston University
Megan Murray, Harvard Medical School
Eric S. Starbuck, Department of Health & Nutrition, Save the Children USA
Carl T. Bergstrom, Department of Biology, University of Washington
Nicola Low, University of Bern, Switzerland
Sünje J. Pamp, Technical University of Denmark
Andrew Snyder-Beattie, University of Oxford
Viktor Müller, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest
Tami Lieberman, Harvard Medical School
Alan Barbour, University of California Irvine
Sven Bergstrom, Umea University, Sweden
Sophia Roosth, Assistant Professor of the History of Science, Harvard University
Sibel Ascioglu, Hacettpe University, Dept. of Infectious Diseases, Turkey
Janet D. Stemwedel, San José State University
Fernando Baquero, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS) Madrid, Spain
Carlos S. Moreno, Emory University
Sarah Otto, University of British Columbia
Richard Levins, Harvard School of Public Health
Andrew Tatem, University of Southampton
Benjamin Kerr, University of Washington
A. David Paltiel, Yale School of Public Health / Yale School of Management
Rochelle Walensky, Massachusetts General Hospital
John W. Jackson, Brigham and Women's Hospital
Julie Parsonnet, Infectious Diseases, Stanford University School of Medicine
John McGowan, Emory University Rollins School of Public Health
John Quackenbush, Dana-Farber Cancer Institute and Harvard School of Public Health
Rafael Canton, Servicio de Microbiologia. Hospital Universitario Ramón y Cajal. Madrid. Spain
Jane Kim, Harvard School of Public Health
Thomas F O'Brien, Brigham and Women's Hospital, Boston, MA
Simon Levin, Princeton University
James Lloyd-Smith, UCLA
Andrew Yates, University of Glasgow
Richard C. Larson, Massachusetts Institute of Technology
Victor DeGruttola, Harvard University
Melinda M. Pettigrew, Yale School of Public Health
Marc D. Natter, Harvard Medical School
Ramanan Laxminarayan, Center for Disease Dynamics, Economics & Policy, New Delhi
Cynthia Schuck-Paim, Origem Scientifica
Emma McBryde, University of Melbourne & Victorian Infectious Diseases Service, Doherty Institute
Robin Bush, University of California, Irvine
Pieter Trapman, Stockholm University
Lumi Viljakainen, University of Oulu
Isabelle Magnoli, Université catholique de Louvain
Jeremy Van Cleve, Duke University
Francisco Dionisio, University of Lisbon
Daniel Wilson, University of Oxford
Amy Hurford, Memorial University of Newfoundland
Sergios-Orestis Kolokotronis, Fordham University
Pedro Silva, University of Lisbon, Portugal
Oscar E. Gaggiotti, University of St Andrews, UK
Richard Edwards, University of New South Wales
Emilia Vynnycky, London School of Hygiene & Tropical Medicine, UK
Martin Kulldorff, Harvard Medical School
Erik F. Y. Hom, University of Mississippi
John Mekalanos, Harvard Medical School
Stephen W. Schaeffer, Pennsylvania State University
Christina Davy, Trent University, Peterborough, Ontario, Canada
Clark Freifeld, Boston Children's Hospital
David A Harmin, Harvard Medical School
Anne D. Yoder, Duke University
Nicholas G Reich, University of Massachusetts - Amherst
Gerald Learn, University of Pennsylvania
Pleuni Pennings, San Francisco State University
Zachary A Szpiech, University of California, San Francisco
Stan Finkelstein, MIT/Harvard Medical School
Paul Avillach, Harvard Medical School
Alain-jacques Valleron, Inserm. Paris, France
Ellen L. Simms, University of California, Berkeley
Anahi Espindola, University of Idaho
Claudio Jose Struchiner, Oswaldo Cruz Foundation, Brazil
Jan Medlock, Oregon State University
Maarten Vonhof, Western Michigan University
Heather Douglas, University of Waterloo
Michael Höhle, Department of Mathematics, Stockholm University
Joy Scaria, Cornell University
Preben Aavitsland, Epidemi, Kristiansand
Fernando Gonzalez-Candelas, University of Valencia, Spain
Dr. Sameeh Ghazal, King Fahad Medical City
William J. Etges, University of Arkansas
Sadia Shakoor, Aga Khan University
Angela Hancock, Max F. Perutz Labs, University of Vienna
Michael Merson, Duke University
Donald R. Olson, New York City Department of Health and Mental Hygiene
Robert Gordon White, Carleton University
Paul Schmid-Hempel, ETH Zurich
Matt Keeling, University of Warwick
Victoria Shaffer, Infection Preventionist; CHWC, Bryan, Ohio
Matthew J. Brown, University of Texas at Dallas
Joel L. Sachs, University of California - Riverside
Jacques Dubochet, University of Lausanne (retired)
François-Xavier Weill, Institut Pasteur, Paris, France
Rodrigo Angerami, State University of Campinas/UNICAMP
Omar Cornejo, Washington State University
Wladimir J. Alonso, Origem Scientific Consultancy
Jacob-S. Seeler, Institut Pasteur, Paris
Sarah Cobey, University of Chicago
Joshua Metlay, Massachusetts General Hospital/Harvard Medical School
Barbara E. Giles, Umea University, Sweden
Brigitte Autran, University Pierre et Marie Curie, Paris
Nicholas S Kelley, University of Minnesota
Jean-Michel Guillon, University of Paris Sud, France
Jon Zelner, Princeton University, Dept. of Ecology and Evolutionary Biology
William C. Miller, UNC - Chapel Hill
Katia Koelle, Duke University
Thomas W. Jeffries, University of Wisconsin - Madison
Harry Greenberg, Stanford University
Romain Gallet, INRA - Montpellier (France)
Allan Hance, INSERM, Paris, France
Simon Fellous, INRA - CBGP, France
Tatyana Novossiolova, University of Bradford
Patricia Baldacci, Institut Pasteur
Godwin Wilson, Hamad Medical Corporation, Qatar
Ralf Koebnik, Institut de Recherche pour le Développement
Elaine Nsoesie, Boston Children's Hospital, Harvard Medical School
Nicolas Voirin, Hospices Civils de Lyon
Mariet Feltkamp, Leiden University Medical Center
Conor Browne, Queen's University Belfast
Quentin Sattentau, University of Oxford
Michael Costa, Abt Associates
Jonathan A. Cooper, Fred Hutchinson Cancer Resarch Center
Andrew Lakoff, University of Southern California
Peter V. Markov, Institut Pasteur
Doug Cyr
bracha rager, faculty of health sciences, ben gurion univ. Israel
Mark Eisler, University of Bristol
Miles Davenport, UNSW Australia
David Bofinger, Grand Canyon Univerity - Graduate Student -Psychology
Daniel Leifer, UC Davis School of Medicine
Benjamin de Bivort, Harvard University
James Lyons-Weiler, PhD, Ebola Rapid Assay Development Consortium
Camillo Di Cicco, University of Rome
Roberto Bruzzone, HKU-Pasteur Research Pole
Anders Huitfeldt, Harvard T.H. Chan School of Public Health
Viktoriya Krakovna, Harvard University PhD student, Future of Life Institute cofounder
sally, uLVxnqHkrg
Emma Kowal, Harvard University
Ales Flidr, Harvard College
Max Kesin, Professional
Dr. Roman V. Yampolskiy, University of Louisville
Robert J. Taylor, Sage Analytica, Bethesda Maryland
Niel Bowerman, Future of Humanity Institute, University of Oxford
Nancy Connell, Rutgers New Jersey Medical School
Kathleen Burns, Sciencecorps
Louis Kang, Harvard University/MIT
Thomas Choate, Air
Aaron Supple, Beth Israel Deaconess Medical Center
Dominic Hall, Cambridge University, Stem Cell Institute
Niran Adeyanju, Obafemi Awolowo University, Nigeria.
Joseph (Jo) Walker, US CDC (signing in personal capacity)
Jeremy Ferranti, Researcher
Bonnie Page
NICOULAUD GHISLAINE
Alexandra Richter, DPFA-Regenbogen-Schulen
David Hartsuch, MD MS CPA, Emergency Resource
Jimmy Joseph Moise, Le P'ti Club inc.


20. Furmanski M. Lab Escapes and “Self-fulfilling prophecy” Epidemics. Center for Arms Control and Nonproliferation (2014). Available from: http://armscontrolcenter.org/Escaped_Vi ... -17-14.pdf

21. Furmanski M. Threatened pandemics and lab escapes: self-fulfilling prophecies. Bull Atom Sci (2014). Available from: http://thebulletin.org/threatened-pande ... hecies7016

22. Klotz LC, Sylvester EJ. The unacceptable risks of a man-made pandemic. Bull Atom Sci (2012). Available from: http://thebulletin.org/unacceptable-ris ... e-pandemic
admin
Site Admin
 
Posts: 36172
Joined: Thu Aug 01, 2013 5:21 am

Re: U.S. government gave $3.7 million grant to Wuhan lab at

Postby admin » Mon Aug 03, 2020 4:19 am

Letter to The NSABB Board [U.S. National Science Advisory Board for Biosecurity]
by Lynn C. Klotz, Ph.D., Senior Science Fellow and member of the Scientist Working Group on Biological and Chemical Weapons Center for Arms Control and Non-proliferation, Washington, DC, USA
September 2015

NOTICE: THIS WORK MAY BE PROTECTED BY COPYRIGHT

YOU ARE REQUIRED TO READ THE COPYRIGHT NOTICE AT THIS LINK BEFORE YOU READ THE FOLLOWING WORK, THAT IS AVAILABLE SOLELY FOR PRIVATE STUDY, SCHOLARSHIP OR RESEARCH PURSUANT TO 17 U.S.C. SECTION 107 AND 108. IN THE EVENT THAT THE LIBRARY DETERMINES THAT UNLAWFUL COPYING OF THIS WORK HAS OCCURRED, THE LIBRARY HAS THE RIGHT TO BLOCK THE I.P. ADDRESS AT WHICH THE UNLAWFUL COPYING APPEARED TO HAVE OCCURRED. THANK YOU FOR RESPECTING THE RIGHTS OF COPYRIGHT OWNERS.


To: The NSABB Board (in advance of the September 28, 2015 meeting)
From: Lynn C. Klotz, PhD, Senior Science Fellow and member of the Scientist Working Group on Biological and Chemical Weapons Center for Arms Control and Non-proliferation, Washington, DC, USA
Home contact Information: 5 Duley Street, Gloucester MA 01930, 978-281-6015, lynnklotz@live.com

The following document is a first draft of a literature-research project that started in the summer of 2015. The project is in an early stage, but has gone far enough to make its point: There is an urgent need for international proactive oversight of influenza research that might increase the pathogenicity of influenza viruses. Some of this gain-of-function research may create lab-made potential pandemic influenza viruses.

Even if the probability is small for an escape from a lab in a single year for such a virus, the fact that there are a large number of research projects underway throughout the world, projects that will be conducted for many years, the overall probability of escape from at least one lab is uncomfortably high.


The Potential Pandemic Influenza Research Enterprise

In a recent Letter to the Editor titled Danger of Potential-Pandemic-Pathogen Research Enterprises (http://intl-mbio.asm.org/content/6/3/e00815-15.full), I argued that there are likely many labs throughout the world, many not funded by the NIH, that are developing mammal-contagious influenza viruses. Research that makes avian, mammalian, or human influenza viruses more virulent, increases their transmissibility, alters their host range, or evades countermeasures is potentially dangerous and may create potential pandemic pathogens.

Influenza viruses are more likely to fuel an uncontrollable outbreak because of their long history of doing just that. This kind of research got considerable attention in 2011 when Professor Ron Fouchier announced that his laboratory had made the H5N1 highly pathogenic avian influenza virus (HPAI) airborne transmissible by respiratory aerosols from ferret to ferret.


In the context of this analysis of recent publications reported in Pub Med (references (1) through (35)), the larger category of Experiments of Concern (EoC) is used as a guide to look for potentially dangerous research. In 2004, the National Academy of Sciences published a report Biotechnology Research in an Age of Terrorism (http://www.nap.edu/catalog/10827.html). The so-called Fink Committee that produced the report was asked to “consider ways to minimize threats from biological warfare and bioterrorism without hindering the progress of biotechnology, which is essential for the health of the nation.” The committee recommended that the “Department of Health and Human Services…create a review system for seven classes of experiments (the Experiments of Concern) involving microbial agents that raise concerns about their potential for misuse.” Specifically, the EoC are:

“1. Would demonstrate how to render a vaccine ineffective. This would apply to both human and animal vaccines…

2. Would confer resistance to therapeutically useful antibiotics or antiviral agents. This would apply to therapeutic agents that are used to control disease agents in humans, animals or crops…

3. Would enhance the virulence of a pathogen or render a non-pathogen virulent. This would apply to plant, animal, and human pathogens…

4. Would increase transmissibility of a pathogen. This would include enhancing transmission within or between species. Altering vector competence to enhance disease transmission would also fall into this class.

5. Would alter the host range of a pathogen. This would include making non zoonotics into zoonotic agents. Altering the tropism of viruses would fit into this class.

6. Would enable the evasion of diagnostic/detection modalities. This could include microencapsulation to avoid antibody-based detection and/or the alteration of gene sequences to avoid detection by established molecular methods.

7. Would enable the weaponization of a biological agent or toxin. This would include the environmental stabilization of pathogens.”


These seven classes of experiments “will require review and discussion by informed members of the scientific and medical community before they are undertaken [proactive oversight] or, if carried out, before they are published in full detail.” For experiments making deadly avian influenza viruses airborne transmissible, many scientists think they should not be carried out at all.

An excellent system for reviewing potentially dangerous experiments, Controlling Dangerous Pathogens: A Prototype Protective Oversight System, was developed in 2007 by The Center for International and Security Studies at Maryland (http://drum.lib.umd.edu/bitstream/1903/ ... ograph.pdf). It recommends a tiered review, from most to least dangerous research. Paraphrased from the Maryland paper:


International Oversight: Activities of Extreme Concern –- An international body would be charged with approving and monitoring all research projects of extreme concern. That authority would be narrowly focused only on those ... that could put an appreciable fraction of the human species at risk, such as research with potential pandemic pathogens.

National Oversight: Activities of Moderate Concern -– National oversight bodies would be responsible for research activity of moderate concern, such as work with anthrax and other agents already identified as having biological weapons potential.

Local Oversight: Activities of Potential Concern—This “encompasses those activities that may increase the destructive potential of biological agents that otherwise would not be considered a threat.

No oversight: All other research


In my opinion, there should be two levels of local oversight. The first level is the currently employed Institutional Biosafety Committee (IBC), and the second is an outside committee. There is concern that IBCs will simply rubber-stamp research proposals from labs in their own institution, so I suggest proactive oversight by a committee outside the institution (perhaps at the state level in the US) for experiments of concern on influenza viruses that do not carry an immediate threat of an outbreak from an escape from the laboratory (e.g., vaccine viruses and other attenuated and inactivated viruses).

Because of the potential for some strains of lab-made influenza viruses to cause international outbreaks, research mutagenizing these viruses that could result in increased pathogenicity (gain of function) should be subject to external oversight. At present, there is little national and no international proactive oversight with any authority to guide or ban experiments. See for instance: Gronvall GK, Rozo M. Synopsis of Biological Safety and Security Arrangements. UPMC Center for Health Security.July 2015. Available at http://www.upmchealthsecurity.org/ourwo ... rangements.

The literature analysis

To date, only one general Pub Med search term, “avian influenza virus mutagenesis,” has been used here to identify potentially dangerous research that might fall under the Experiments of Concern (EoC). To focus on the most recent research, only research over the last two years (September 1, 2013 through August 29, 2015) published Pub Med abstracts were read. Thirty-five potential EoC were identified in 136 abstracts for this single search term. Many of the 136 abstracts (136-35=101) described research that did not constitute EoC; for the most part, they did not employ live viruses.

For each of the 35 abstracts that seemed to describe EoC, parts of the full research papers were read to confirm their EoC status. Since I have only a modest grasp of molecular virology, I may have labeled a few that are not EoC, and I may have missed a few that are EoC.

The actual number of EoC research being carried out today is likely much greater than 35 because of the following:

• Only a single avian influenza search term was used; other influenza search terms would yield additional EoC. In particular, viruses that have already caused pandemics such at the 2009 H1N1 virus.
• Expanding the search back to 2012, and even before that, would yield more EoC.
• There are surely some EoC that are not yet published.
• Search terms involving other pathogens such as SARS, MERS and Ebola would yield more EoC.


A summary of the 35 EoC found from the search is provided in Table 1. Titles and citations for the reference numbers are in the reference list at the end.

Reference No. / Countries of Authors / Viruses / Biosafety Level / EOC Category

1 / USA, Korea / H1N1 vaccine strain / ? / 2
2 / China / Avian, human H6N1 / BSL3 / 5
3 / China / H5N1 HPAI / not reported / 1, 3
4 / USA, Egypt / H5N1 HPAI / ? / 1, 3
5 China / H9N2 avian / BSL3 / 3, 5
6 / Japan, USA / H5N1 HPAI / BSL3 / 3, 5
7 / Netherlands, UK / H1N1 2009 / BSL2 / 1, 3
8 / China / H5N1 HPAI / Not reported / 3
9 / China / H7N1 avian / BSL3 / 3, 5
10 / China H9N2, H1N1 2009, H5N1 HPAI / BSL3, BSL3+ / 3
11 / USA, Japan / H5N1 HPAI / BSL3 / 3
12 / China / H6N1 avian / ?? / 3, 5
13 / Japan, Thailand / H5N1 HPAI / BSL3 / 3
14 / China / H9N2 duck / ABSL3+ / 3, 5
15 / France / avian H1N1 / BSL3+ / 3, 5
16 / USA / A/WSN/1933 H1N1 / likely BSL2 / 5
17 / Netherlands / airborne trans H5N1 HPAI animal / BSL3+ / 3, 4
18 / China / H7N9 HPAI / ABSL3 / 3
19 / Japan / H7N9 HPAI / BSL3+ / 3
20 / China / H1N1 2009 pandemic / not reported, BSL2? / 3
21 / China / H1N1 2009 pandemic / not reported, BSL2? / 2
22 / Spain, UK / influenza A vaccine strains / assume BSL2 / 3
23 / Netherl., Germany / HPAI H5N1 / BSL3+ / 1
24 / USA ; H1N1 vaccine strain / assume BSL2 / 1
25 / USA / H3N2 / BSL2? / 2
26 / Germany / HPAI H5N1 / BSL3+ / 1
27 / China, USA / HPAI H5N1 / BSL3, ABSL3 / 2
28 / Russia / nonpath H5N2, HPAI H5N1 / not reported, BSL2? / 1
29 / Germany / 1968 pandemic H3N2 / not reported, BSL2? / 3?
30 / USA / H1N1 vaccine strain / not reported, BSL2? / 1
31 / USA / HPAI H5N1 / BSL3 / 3, 5
32 / UK HPAI H5N1 / BSL3 / 3, 5
33 / USA / H3N2, H1N1 / not reported, BSL2? / 3?
34 / USA / HPAI H5N1 / ABSL3+ / 3, 4
35 / USA / human H3N2, HPAI H5N1 / ABSL3+ / 1

Table 1: The 35 EoC. The boldface in the Countries of Authors column indicates the country where the BSL2, BSL3 research was performed. Much of that research is being carried out in Asia, particularly China.


The 35 published research listed in the Table are described briefly below. The descriptions are a combination of quotes from the Pub Med abstracts and full papers, often paraphrased to make them readily understandable with regard to EoC. The numbers, 1 through 35, at the beginning of each entry below correspond to the numbered reference citations at the end of this document. The bold-face [italicized] highlighted descriptions are the greatest concern in my opinion because the mutated viruses are often more pathogenic than the wild-type strains and are potentially airborne transmissible from human to human.

1. Recombinant influenza viruses were made that have single or double substitutions in neuraminidase N3, N7 and N9 subtypes in a background of an H1N1 vaccine strain. N3, N7 and N9 subtypes have caused human infections. The research discovered resistance to neuraminidase inhibitors in some strains. [Comment: Mutagenesis of vaccine strains are not of the highest concern, unless there is reason to believe that the mutagenesis could make the strain virulent.]

2. Avian H6N1 virus was adapted to human receptor-binding. Receptor-binding was analyzed using isolated H6 proteins. Binding was confirmed using two avian and one human-derived H6N1 recombinant viruses. The research found two HA substitutions important to acquire the human receptor-binding. [Comment: Only one case of human H6N1 infection has been reported to date. Could increasing receptor binding in humans lead to more human cases?]

3. Site-directed mutagenesis was used to generate different patterns of stem glycans on the HA protein of an HPAI H5N1. The results indicated that some glycans were dispensable for the generation of replication-competent influenza viruses. Some combinations of glycans led to a significant decrease of the growth rates of the mutant viruses in animal cells in comparison to wild type virus. Furthermore, most of the mutant viruses were more sensitive to neutralizing antibodies than the WT virus. [Comment: Could researchers predict results in advance? These are experiments that should be proactively reviewed, as some mutations could have increased virulence or avoided existing vaccines. The outcome is, however, reassuring]

4. Variant H5N1 viruses with five mutations in the HA gene were made. The research indicated that targeted mutation in the HA may be effectively used as a tool to develop broadly reactive influenza vaccines to cope with the continuous antigenic evolution of viruses. [Comment: Could researchers predict results in advance? These are experiments that should be proactively reviewed, as some mutations could have increased virulence or avoid existing vaccines. As viral mutant population sizes are huge, the probability of finding an adaptive mutation is pretty large for RNA viruses.]

5. The research found three mutations in HA, N and PB2 proteins that after four passages conferred high virulence to H9N2 virus in mice. Adaption in mice enhanced the viral polymerase activity and receptorbinding ability, which resulted in a virulent phenotype in mice but not a transmissible phenotype to guinea pigs. [Comment: This additional guinea pig experiment was useful to reduce concern or fear over increased host range.]

6. Mutations made in the PA protein enhanced HPAI H5N1 virus growth capability in human lung cells and increased pathogenicity in mice, suggesting that they contribute to adaptation to mammalian hosts.

7. Mutants made with substitutions in the hemagglutinin of a strain of 2009 H1N1 pandemic influenza virus revealed that single substitutions affecting the loop adjacent to the receptor binding site caused escape from ferret and human antibodies elicited after the 2009 H1N1 pandemic influenza virus infection. The majority of these substitutions resulted in similar or increased replication efficiency in vitro compared to that of the virus carrying the wild-type hemagglutinin. However, none of the substitutions was sufficient for escape from the antibodies in sera from individuals that experienced both seasonal and pandemic H1N1 virus infections. [Comment: This is the virus that infected 25% of the world population world-wide in 2009 and killed thousands of people. Any experiment that increases replication efficiency or escapes antibodies should not be carried out in BSL2.]

8. Mutant HPAI H5N1 viruses made with loss of two HA protein glycosylation sites showed increased pathogenicity, systemic spread and pulmonary inflammation in mice compared to the wild-type H5N1 virus.

9. Two mouse-adapted variants of wild-type avian H7N9 made by independent serial passages in mice confer enhanced virulence in mammals. [Comment: This virus has infected and caused fatalities in humans from direct contact with poultry. It would have been informative if the researchers had carried out a single ferret to ferret transmission experiment to see if this mouse-passaged virus has increased host range and virulence in a species (ferrets) that is perhaps a model for humans.]

10. Mouse-adapted PB2 gene reassortants with a phenylalanine-to-leucine mutation contributes to enhanced polymerase activity, enhanced replication, pathogenicity of H9N2 in mice, increased virulence of H5N1 and 2009 pandemic H1N1. [Comment: Could increasing virulence in the 2009 pandemic flu cause a new outbreak among humans?]

11. The introduction of an arginine residue into PA of HPAI H5N1 significantly increased the viral polymerase activity in mammalian cells and its virulence and pathogenicity in mice.

12. A substitution in the PB2 protein and a substitution in the PA protein enhance virulence and expand the tropism of H6N1 virus in mice. [Comment: Only one case of human H6N1 infection has been reported to date. Could increasing virulence and tropism in humans lead to more human cases?]

13. Introduction of a single substitution into PB1 polymerase of an HPAI H5N1 increased both polymerase activity in chicken cells and the pathogenicity of the recombinant viruses in chickens. [Comment: This translates to humans.]

14. A nonpathogenic duck-origin H9N2 virus was serial-passaged in mouse lungs. Increased virulence was detectable after five passages, and a highly pathogenic mouse-adapted strain was obtained after 18 passages. There were eight amino-acid substitutions in six viral proteins. [Comment: Since serial passage was in lungs, this kind of research could lead to airborne transmission. A single ferret to ferret passage experiment should have been carried out to see if airborne transmission was achieved.]

15. A deletion in the NS segment of a duck-origin avian H1N1 virus showed both increased replication potential and an increased pathogenicity in chicken embryonated eggs and in a chicken lung epithelial cell line.

16. Mutants created in the PB2 subunit identified critical residues required for general polymerase function and specific residues preferentially required in human but not avian cells. [Comment: It is unclear what virus was used in the study. It may have been PB2 mutants reassorted into A/WSN/1933 H1N1 virus. A/WSN/1933 is a derivative of 1918 flu virus and is not around today. This is a mouse brain adapted virus so not a threat.]

17. Five substitutions proved to be sufficient to retain the airborne-transmissible phenotype of HPAI H5N1. [Comment: A large number of substitution experiments on an airborne transmissible, deadly virus were carried out in this study, and a large number of nose and throat swabs and blood samples were taken, all increasing significantly the likelihood of an LAI. This is follow-up research from the Fouchier lab.]

18. An H7N9 virus from a fatal case was used as the recombination background to study the contribution of the E627K mutation in PB2 and of other mutations to the pathogenicity of H7N9 virus infection in mammals. All the mutant viruses generated were likely to be loss-of-function mutants with regard to pathogenicity, compared to the wild-type H7N9. [Comment: The research appears to yield less pathogenic H7N9. Nonetheless, it is not possible to predict pathogenicity at the outset of the experiments. Since the background virus is a fatal case; proactively, the generated viruses could have been more virulent humans. It would have been informative if the researchers had carried out a single ferret to ferret transmission experiment to see if this virus was more virulent in ferrets, the model for human lung.]

19. Potentially mammalian adapting amino acids were converted individually and in combination to their avian virus-type counterparts in a H7N9 virus. Several mutants were slightly more virulent in mice than the wild-type A(H7N9) virus and exhibited increased polymerase activity in human cells.

20. A single “consensus” PB2 mutation common to swine and the 2009 H1N1 pandemic virus increased pathogenicity. Mutant virus prepared by recombination of a 2009 H1N1 pandemic virus with a segment containing the single PB2 mutation significantly enhanced polymerase activity in mammalian cells. Also, the virus exhibited increased growth properties and induced significant weight loss in a mouse model compared to the wild type. [Comments: This more pathogenic virus could win the battle with the immune system, so cause significant illness.]

21. Reduced sensitivities to oseltamivir were observed in three mutant H1N1 2009 pandemic viruses. A double mutant showed a large increase of IC-50 for the drug Oseltamivir from 0.7 nM for WT to 4,000 nM for the double mutant, a 5,700-fold difference [Comment: Such a large increase in IC-50 would almost certainly make the drug unusable in humans.]


[22-27 MISSING]

28. A non-pathogenic avian H5N2 was adapted to mice by lung-to-lung passage. Also, the reverse genetics-derived influenza virus containing the HA and NA genes of an HPAI H5N1 in the genetic background of a high-growth H1N1 vaccine strain was obtained. Antibody escape mutants using these two viruses were obtained. Monitoring of effects of HA mutations found in H5 segment escape mutants is essential for accurate prediction of mutants with pandemic potential. [Comment: While H5N2 does not appear to have caused any human infections, adapting it to mice by lung to lung passage could have made it virulent in humans and even airborne transmissible.]

29. Influenza A viruses circulating in humans from ∼1950 to ∼1987 featured a nonstructural (NS1) protein with a C-terminal amino acid extension present in the H3N2 1968 pandemic flu virus. This research deleted the NS1 extension in the H3N2 in order to compare the wild type H3N2 with the virus with the NS1 deletion. The replication kinetics of the wild-type H3N2 and the deletion mutant were indistinguishable in most experimental systems. However, wild-type virus out-competed the mutant during mixed infections, suggesting that the NS1 extension conferred minor growth advantages. [Comment: The resurrection/rescue of an historical pandemic virus is potentially as dangerous as a lab-made PPP if it escapes from the laboratory, provided that the virus employed is identical to or very close to the 1968 pandemic strain.]


[30 MISSING]

31. A particular point mutation in the PB2 protein of HPAI H5N1 virus, PB2 627K, has been identified as a virulence and host range determinant for infection of mammals, and is present in strains capable of airborne transmission. This mutation in the PB2 gene appeared from day 4 and 5 along the respiratory tracts of mice inoculated intranasally and was complete by day 6 post-inoculation. The mutation correlated with efficient replication of the virus in mice. [Comment: This kind of experiment may be on a path to an airborne transmissible strain.]

32. This research focused on the particular PB2 point mutation in Reference 31, just above. Viruses constructed by reverse genetics were made to contain converse PB2 627K/E mutations in a Eurasian HPAI H5N1 virus and, for comparison, a historical pre-Asian HPAI H5N1 virus that naturally bears PB2 627E. Effects on viral fitness were observed in in vitro or in vivo experiments. Results suggest that the PB2 627K mutation supports viral fitness in Eurasian-lineage viruses; in contrast, the mutation carries a significant fitness cost in a historical pre-Asian virus.

[33 MISSING]

34. Influenza virus entry is mediated by the acidic-pH-induced activation of HA protein. This research investigated how a decrease in the HA activation pH influences the properties of highly pathogenic H5N1 influenza virus in mammalian hosts. Viruses containing either wild-type HA or an acid-stabilizing point mutation were prepared. Wild-type and viruses with the mutation promoted similar levels of morbidity and mortality in mice and ferrets. The mutation was found to enhance the growth of an H5N1 influenza virus in the mammalian upper respiratory tract, and yet it was insufficient to enable contact transmission in ferrets. Neither virus transmitted efficiently to naive contact cage-mate ferrets. [Comment: It is fortunate that contact transmission was not found.]

35. The research focused on an antigenic cluster associated with a natural single hemagglutinin (HA) substitution that occurred between 1992 and 1995 in the H3N2 virus. Reverse-genetics experiments demonstrated that the HA mutation increases viral receptor binding avidity. The mutation does not prevent antibody binding; rather, viruses possessing this mutation escape antisera simply because the virus attaches to cells more efficiently. [Comment: The H3N2 virus has caused human infections when transmitted from swine. In a 2012 small outbreak, there was no evidence of community transmission. Nonetheless, the virus is an immune escape strain.]

While the search term was not designed to pick up the 2009 human pandemic H1N1 virus, it did pick up a few experiments involving mutagenesis of that strain. While some of this research is carried out at BSL2, it could be classified as research of great concern because that virus is airborne transmissible.

For research involving mutagenesis of vaccine strains, biosafety level was generally not reported. It is assumed that it is BSL2, as vaccine strains are attenuated or inactivated viruses. One concern is that some mutagenesis research could make a vaccine strain virulent. Researchers should be prepared to argue for the safety of their particular proposed vaccine-strain mutagenesis research to defend the lower BSL2 containment.

Several of the EoC (references 7, 10, 14, 17, 20, 21, 28, 29) are lab-made potentially dangerous influenza viruses that could spread from human to human by the airborne route.

Proactive review at the local, national, or international level that considers risk and value (benefits) should be considered before allowing any mutagenesis and related research that might result in Experiments of Concern to go forward, and under what conditions.

Conclusion

Research that employs, makes, or could make airborne transmissible strains is of the greatest concern. All this research should be subject to proactive international review and oversight. There is an urgent need for a binding international process. While the NSABB mandate is likely restricted to NIH-funded research or perhaps any research in the United States, it behooves the NSABB to urge the State Department to seek a binding international agreement for proactive review and oversight of potential pandemic research.

I would like to thank Simon Wain-Hobson for comments and insights.

REFERENCES

1. Song MS(1), Marathe BM(2), Kumar G(3), Wong SS(2), Rubrum A(2), Zanin M(2), Choi YK(4), Webster RG(2), Govorkova EA(2), Webby RJ(5). Unique determinants of neuraminidase inhibitor resistance among N3, N7, and N9 avian influenza viruses. JVI.01514-15. [2015, Epub ahead of print]

2. Wang F(1), Qi J(2), Bi Y(2), Zhang W(2), Wang M(1), Zhang B(3), Wang M(4), Liu J(4), Yan J(2), Shi Y(5), Gao GF(6). Adaptation of avian influenza A (H6N1) virus from avian to human receptor-binding preference. EMBO J. 2015 Jun 12;34(12):1661-73. doi: 10.15252/embj.201590960.

3. Zhang X(1), Chen S(1), Yang D(1), Wang X(1), Zhu J(1), Peng D(2), Liu X(1). Role of stem glycans attached to haemagglutinin in the biological characteristics of H5N1 avian influenza virus. J Gen Virol. 2015 Jun;96(Pt 6):1248-57. doi: 10.1099/vir.0.000082.

4. Ibrahim M(1), Sultan HA(2), Razik AG(2), Kang KI(3), Arafa AS(4), Shehata AA(2), Saif YM(5), Lee CW(6). Development of broadly reactive H5N1 vaccine against different Egyptian H5N1 viruses. Vaccine. 2015 May 28;33(23):2670-7. doi: 10.1016/j.vaccine.2015.04.023.

5. Sang X(1), Wang A, Chai T, He X, Ding J, Gao X, Li Y, Zhang K, Ren Z, Li L, Yu Z, Wang T, Feng N, Zheng X, Wang H, Zhao Y, Yang S, Gao Y, Xia X. Rapid emergence of a PB2-E627K substitution confers a virulent phenotype to an H9N2 avian influenza virus during adoption in mice. Arch Virol. 2015 May;160(5):1267-77. doi: 10.1007/s00705-015-2383-5.

6. Yamaji R(1), Yamada S(2), Le MQ(3), Ito M(1), Sakai-Tagawa Y(1), Kawaoka Y(4). Mammalian adaptive mutations of the PA protein of highly pathogenic avian H5N1 influenza virus. J Virol. 2015 Apr;89(8):4117-25. doi: 10.1128/JVI.03532-14.

7. Koel BF(1), Mögling R(2), Chutinimitkul S(1), Fraaij PL(3), Burke DF(4), van der Vliet S(1), de Wit E(1), Bestebroer TM(1), Rimmelzwaan GF(1), Osterhaus AD(1), Smith DJ(5), Fouchier RA(1), de Graaf M(6). Identification of amino acid substitutions supporting antigenic change of influenza A(H1N1)pdm09 viruses. J Virol. 2015 Apr;89(7):3763-75. doi: 10.1128/JVI.02962-14.

8. Zhang X(1), Chen S(1), Jiang Y(1), Huang K(1), Huang J(1), Yang D(1), Zhu J(1), Zhu Y(1), Shi S(1), Peng D(2), Liu X(1). Hemagglutinin glycosylation modulates the pathogenicity and antigenicity of the H5N1 avian influenza virus. Vet Microbiol. 2015 Feb 25;175(2-4):244-56. doi: 10.1016/j.vetmic.2014.12.011.

9. Yu Z(1), Sun W(2), Li X(3), Chen Q(4), Chai H(5), Gao X(2), Guo J(2), Zhang K(2), Wang T(2), Feng N(2), Zheng X(2), Wang H(2), Zhao Y(2), Qin C(6), Huang G(2), Yang S(2), Hua Y(5), Zhang X(7), Gao Y(8), Xia X(9). Adaptive amino acid substitutions enhance the virulence of a reassortant H7N1 avian influenza virus isolated from wild waterfowl in mice. Virology. 2015 Feb;476:233-9. doi: 10.1016/j.virol.2014.11.031.

10. Liu Q(1), Huang J(1), Chen Y(1), Chen H(1), Li Q(1), He L(1), Hao X(1), Liu J(1), Gu M(1), Hu J(1), Wang X(1), Hu S(1), Liu X(1), Liu X(2). Virulence determinants in the PB2 gene of a mouse-adapted H9N2 virus. J Virol. 2015 Jan;89(1):877-82. doi: 10.1128/JVI.01775-14.

11. Fan S(1), Hatta M(1), Kim JH(1), Le MQ(2), Neumann G(1), Kawaoka Y(3). Amino acid changes in the influenza A virus PA protein that attenuate avian H5N1 viruses in mammals. J Virol. 2014 Dec;88(23):13737-46. doi: 10.1128/JVI.01081-14.

12. Cheng K(1), Yu Z(2), Chai H(3), Sun W(4), Xin Y(4), Zhang Q(5), Huang J(4), Zhang K(4), Li X(4), Yang S(4), Wang T(4), Zheng X(4), Wang H(4), Qin C(6), Qian J(4), Chen H(5), Hua Y(7), Gao Y(8), Xia X(9). PB2-E627K and PA-T97I substitutions enhance polymerase activity and confer a virulent phenotype to an H6N1 avian influenza virus in mice. Virology. 2014 Nov;468-470:207-13. doi: 10.1016/j.virol.2014.08.010.

13. Suzuki Y(1), Uchida Y(2), Tanikawa T(1), Maeda N(1), Takemae N(2), Saito T(3). Amino acid substitutions in PB1 of avian influenza viruses influence pathogenicity and transmissibility in chickens. J Virol. 2014 Oct;88(19):11130-9. doi: 10.1128/JVI.01564-14.

14. Liu Q(1), Chen H, Huang J, Chen Y, Gu M, Wang X, Hu S, Liu X, Liu X. A nonpathogenic duck-origin H9N2 influenza A virus adapts to high pathogenicity in mice. Arch Virol. 2014 Sep;159(9):2243-52. doi: 10.1007/s00705-014-2062-y.

15. Trapp S(1), Soubieux D(2), Marty H(1), Esnault E(1), Hoffmann TW(3), Chandenier M(3), Lion A(1), Kut E(1), Quéré P(1), Larcher T(4), Ledevin M(4), Munier S(5), Naffakh N(5), Marc D(6). Shortening the unstructured, interdomain region of the non-structural protein NS1 of an avian H1N1 influenza virus increases its replication and pathogenicity in chickens. J Gen Virol. 2014 Jun;95(Pt 6):1233-43. doi: 10.1099/vir.0.063776-0.

16. Kirui J(1), Bucci MD, Poole DS, Mehle A. Conserved features of the PB2 627 domain impact influenza virus polymerase function and replication. J Virol. 2014 Jun;88(11):5977-86. doi: 10.1128/JVI.00508-14.

17. Linster M(1), van Boheemen S(1), de Graaf M(1), Schrauwen EJ(1), Lexmond P(1), Mänz B(1), Bestebroer TM(1), Baumann J(2), van Riel D(1), Rimmelzwaan GF(1), Osterhaus AD(1), Matrosovich M(2), Fouchier RA(3), Herfst S(1). Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell. 2014 Apr 10;157(2):329-39. doi: 10.1016/j.cell.2014.02.040.

18. Mok CK(1), Lee HH, Lestra M, Nicholls JM, Chan MC, Sia SF, Zhu H, Poon LL, Guan Y, Peiris JS. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J Virol. 2014 Mar;88(6):3568-76. doi: 10.1128/JVI.02740- 13.

19. Yamayoshi S(1), Yamada S, Fukuyama S, Murakami S, Zhao D, Uraki R, Watanabe T, Tomita Y, Macken C, Neumann G, Kawaoka Y. Virulence-affecting amino acid changes in the PA protein of H7N9 influenza A viruses. J Virol. 2014 Mar;88(6):3127-34. doi: 10.1128/JVI.03155-13.

20. Zhao Z(1), Yi C, Zhao L, Wang S, Zhou L, Hu Y, Zou W, Chen H, Jin M. PB2-588I enhances 2009 H1N1 pandemic influenza virus virulence by increasing viral replication and exacerbating PB2 inhibition of beta interferon expression. J Virol. 2014 Feb;88(4):2260-7. doi: 10.1128/JVI.03024-13.

21. Huang L(1), Cao Y, Zhou J, Qin K, Zhu W, Zhu Y, Yang L, Wang D, Wei H, Shu Y. A conformational restriction in the influenza A virus neuraminidase binding site by R152 results in a combinational effect of I222T and H274Y on oseltamivir resistance.

22. Pérez-Cidoncha M(1), Killip MJ(2), Asensio VJ(3), Fernández Y(1), Bengoechea JA(4), Randall RE(2), Ortín J(1). Generation of replication-proficient influenza virus NS1 point mutants with interferonhyperinducer phenotype. PLoS One. 2014 Jun 2;9(6):e98668. doi: 10.1371/journal.pone.0098668.

23. Sitaras I(1), Kalthoff D(2), Beer M(2), Peeters B(3), de Jong MC(4). Immune escape mutants of Highly Pathogenic Avian Influenza H5N1 selected using polyclonal sera: identification of key amino acids in the HA protein. PLoS One. 2014 Feb 25;9(2):e84628. doi: 10.1371/journal.pone.0084628.

24. Heaton NS(1), Sachs D, Chen CJ, Hai R, Palese P. Genome-wide mutagenesis of influenza virus reveals unique plasticity of the hemagglutinin and NS1 proteins. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20248-53. doi: 10.1073/pnas.1320524110.

25. Tamura D(1), Nguyen HT, Sleeman K, Levine M, Mishin VP, Yang H, Guo Z, Okomo-Adhiambo M, Xu X, Stevens J, Gubareva LV. Cell culture-selected substitutions in influenza A(H3N2) neuraminidase affect drug susceptibility assessment. Antimicrob Agents Chemother. 2013 Dec;57(12):6141-6. doi: 10.1128/AAC.01364-13.

26. Kalthoff D(1), Röhrs S, Höper D, Hoffmann B, Bogs J, Stech J, Beer M. Truncation and sequence shuffling of segment 6 generate replication-competent neuraminidase-negative influenza H5N1 viruses. J Virol. 2013 Dec;87(24):13556-68. doi: 10.1128/JVI.02244-13.

27. Zhu X(1), Guo YH, Jiang T, Wang YD, Chan KH, Li XF, Yu W, McBride R, Paulson JC, Yuen KY, Qin CF, Che XY, Wilson IA. A unique and conserved neutralization epitope in H5N1 influenza viruses identified by an antibody against the A/Goose/Guangdong/1/96 hemagglutinin. J Virol. 2013 Dec;87(23):12619-35. doi: 10.1128/JVI.01577-13.

28. Rudneva IA(1), Timofeeva TA, Ignatieva AV, Shilov AA, Krylov PS, Ilyushina NA, Kaverin NV. Pleiotropic effects of hemagglutinin amino acid substitutions of H5 influenza escape mutants. Virology. 2013 Dec;447(1-2):233-9. doi: 10.1016/j.virol.2013.09.013.

29. Lohrmann F(1), Dijkman R, Stertz S, Thiel V, Haller O, Staeheli P, Kochs G. Emergence of a C-terminal seven-amino-acid elongation of NS1 in around 1950 conferred a minor growth advantage to former seasonal influenza A viruses. J Virol. 2013 Oct;87(20):11300-3. doi: 10.1128/JVI.01271-13.

30. Myers JL(1), Wetzel KS, Linderman SL, Li Y, Sullivan CB, Hensley SE. Compensatory hemagglutinin mutations alter antigenic properties of influenza viruses. J Virol. 2013 Oct;87(20):11168-72. doi: 10.1128/JVI.01414-13.

31. Min JY(1), Santos C, Fitch A, Twaddle A, Toyoda Y, DePasse JV, Ghedin E, Subbarao K. Mammalian adaptation in the PB2 gene of avian H5N1 influenza virus. J Virol. 2013. Oct;87(19):10884-8. doi: 10.1128/JVI.01016-13.

32. Long JS(1), Howard WA, Núñez A, Moncorgé O, Lycett S, Banks J, Barclay WS. The effect of the PB2 mutation 627K on highly pathogenic H5N1 avian influenza virus is dependent on the virus lineage. J Virol. 2013 Sep;87(18):9983-96. doi: 10.1128/JVI.01399-13.

33. Roberts KL(1), Leser GP, Ma C, Lamb RA. The amphipathic helix of influenza A virus M2 protein is required for filamentous bud formation and scission of filamentous and spherical particles. J Virol. 2013 Sep;87(18):9973-82. doi: 10.1128/JVI.01363-13.

34. Zaraket H(1), Bridges OA, Duan S, Baranovich T, Yoon SW, Reed ML, Salomon R, Webby RJ, Webster RG, Russell CJ. Increased Acid Stability of the Hemagglutinin Protein Enhances H5N1 Influenza Virus Growth in the Upper Respiratory Tract but Is Insufficient for Transmission in Ferrets. J Virol. 2013 Sep;87(17):9911-22. doi: 10.1128/JVI.01175-13.

35. Li Y(1), Bostick DL, Sullivan CB, Myers JL, Griesemer SB, Stgeorge K, Plotkin JB, Hensley SE. Single hemagglutinin mutations that alter both antigenicity and receptor binding avidity influence influenza virus antigenic clustering. J Virol. 2013 Sep;87(17):9904-10. doi: 10.1128/JVI.01023-13.
admin
Site Admin
 
Posts: 36172
Joined: Thu Aug 01, 2013 5:21 am

Re: U.S. government gave $3.7 million grant to Wuhan lab at

Postby admin » Mon Aug 03, 2020 4:37 am

Danger of Potential-Pandemic-Pathogen Research Enterprises
by Lynn C. Klotz
American Society for Microbiology
DOI: 10.1128/mBio.00815-15
Copyright © 2015 Klotz

NOTICE: THIS WORK MAY BE PROTECTED BY COPYRIGHT

YOU ARE REQUIRED TO READ THE COPYRIGHT NOTICE AT THIS LINK BEFORE YOU READ THE FOLLOWING WORK, THAT IS AVAILABLE SOLELY FOR PRIVATE STUDY, SCHOLARSHIP OR RESEARCH PURSUANT TO 17 U.S.C. SECTION 107 AND 108. IN THE EVENT THAT THE LIBRARY DETERMINES THAT UNLAWFUL COPYING OF THIS WORK HAS OCCURRED, THE LIBRARY HAS THE RIGHT TO BLOCK THE I.P. ADDRESS AT WHICH THE UNLAWFUL COPYING APPEARED TO HAVE OCCURRED. THANK YOU FOR RESPECTING THE RIGHTS OF COPYRIGHT OWNERS.


LETTER

The research goal in a number of laboratories is to make highly pathogenic avian influenza (HPAI) viruses contagious to humans via respiratory aerosols. For instance, the H5N1 influenza virus has been made contagious to ferrets (1), the animal model often used as a proxy for humans. Concern over escape from a laboratory of a deadly human-contagious virus (e.g., influenza, severe acute respiratory syndrome [SARS], and Middle East respiratory syndrome [MERS] viruses) prompted the U.S. Government to hold back funding for this research “until a robust and broad deliberative process (2) is completed that results in the adoption of a new USG gain-of-function research policy.” This discussion is now under way in the United States and is to be completed in 2016.

In relation to this discussion, mBio published three letters to the editor in a debate between Dr. Ron Fouchier and me. Defending the safety of his work in the first letter (3), Dr. Fouchier calculated that it would likely take more than a million years for an escape from his lab through a laboratory-acquired infection (LAI). Intuitively, this million-year claim seems dubious. I questioned the equation used in the Fouchier calculation and the extremely low probability of escape that he employed in the calculation, and I outlined an alternative approach (4). Fouchier's response to my comments was then published in mBio (5). It is clear that he did not understand my methodology.

In calculations of the probability of a community LAI (“E”), Dr. Klotz further assumes that transmission studies in the Erasmus MC facility will be performed for a period (“y”) of 1 million years. I am hopeful that our research enterprise will have reached solid conclusions on determinants of airborne transmission a bit sooner.


Rhetorical quip aside, neither his million-year result nor my questioning of it implies or assumes in any way that research must be performed for a given number of years. My questioning and my alternative approach were simply a comment on his approach. Elsewhere in my comments (4), I assumed that the research enterprise will be concluded in 10 years, as does he.

In order to respond to Fouchier's misunderstanding and to expand on the general usefulness of my approach, I provide here two simple equations for estimating both the likelihood of escape and the elapsed time to an escape. The equations may be employed for a single lab and for a “research enterprise” of many labs. The conclusion is that the likelihood of an escape may be uncomfortably high and that the elapsed time to an escape may be uncomfortably short.

Dr. Fouchier uses the simplistic formula y = 1/P1 to calculate the likely number of years elapsed, y, before an escape occurs, where P1 is the probability of escape from his lab in 1 year. His 1-million-year calculation (3) is misleading, as it does not account for the fact that research will proceed for more than 1 year, and it was not expanded to calculate the number of years that elapse before an escape occurs for the many labs in the research enterprise.


My approach, embodied in equation 1, may be used to calculate the probability, E, that at least one escape will occur for an n-lab research enterprise conducting research for y years (at least one is likely exactly one, as the probability that two or more escapes will occur is extremely small, and if an escape does occur, the whole n-lab research enterprise would almost certainly be shut down), and equation 2 may be used to calculate the number of years that elapse, y, before an escape.

E=1−(1−P1)yn [1]

Solving equation 1 for y gives

y=(1/n)×log(1−E)/log(1−P1) [2]

Derivations of equations 1 and 2 may be found in the Appendix.

In equation 2, probability E may be viewed as how much escape risk we are willing to tolerate, that is, the value of E that is too high a risk for an n-lab y-year research enterprise. Is an E of 0.1%, 1%, or 10% too high? The level of risk that we are willing to tolerate is subjective. Since a lab escape may result in an uncontrollable disease outbreak with thousands to millions of deaths, even a 1% chance, E = 0.01, seems much too high.

Following Fouchier's focus on elapsed years as a measure of biosafety, only elapsed years will be calculated here. The results, presented in Table 1, are for a 15-lab research enterprise; 15 is the number of NIH-funded labs that have been identified as subject to the research pause. (Originally 18 labs were identified for the funding pause. That number was subsequently reduced to 15.) While some of these labs do not focus on developing mammal-contagious influenza viruses, there are likely many labs throughout the world not funded by the NIH that are, so the number 15 seems a reasonable guess for the size of the research enterprise.

TABLE 1. Calculation of numbers of years that elapse before an escape for 15 labs

P1 / y with an E ofa: 0.001 / y with an E ofa: 0.01 / y with an E ofa: 0.5 / Comment


0.002 / 0.033 / 0.33 / 23 / From CDC data
0.0001 / 0.67 / 6.7 / 462 / Klotz estimate
1.00E−06 / 66.7 / 670.0 / 46,210 / Fouchier estimate

a The data of the table, calculated from equation 2, are the expected numbers of years that elapse before a lab escape (y) from one of the labs in a research enterprise of 15 laboratories for three different risk tolerances (E) and three different probabilities (P1) of escape from a single lab in a single year.


Presented in Table 2 are the same calculations but for a single lab (n = 1), such as Fouchier's lab.

TABLE 2. Calculation of numbers of years that elapse before an escape for a single lab

P1 / y with an E ofa: 0.001 / y with an E ofa: 0.01 / y with an E ofa: 0.5 / Comment


0.002 / 0.50 / 5.02 / 346 / From CDC data
0.0001 / 10.0 / 100 / 6931 / Klotz estimate
1.00E−06 / 1000 / 10,050 / 693,147 / Fouchier estimate

a The data of the table, calculated from equation 2, are the expected numbers of years that elapse before a lab escape (y) from a single lab.


Three quite different probabilities for escape, P1, are employed in the calculations in the tables. The highest probability (P1 = 0.002) is a minimum estimate calculated (6) from CDC statistics (7) for undetected or unreported LAIs in biosafety level 3 (BSL3) labs. This probability is likely higher than that for LAIs in BSL3 labs that have extra biosafety precautions in place (called BSL3+), such as Fouchier claims for his lab. The probability (P1 = 0.0001) is 20 times lower and is an estimate for differences between BSL3 and BSL3+ labs. The final probability (P1 = 1 × 10−6) is Fouchier's estimate (3). To make his estimate, Fouchier itemizes the various safety measures in his lab and generously reduces the probability for each safety measure but admits that it is a guess: “the magnitude of this increase in safety is not known.” Finally, the discussion here of probabilities has been restricted to LAIs, but there are other routes of escape, such as mechanical failure and removal of live virus from BSL3+ containment accidentally or for hostile purposes.

From Table 1, it is clear that the research enterprise is unsafe when an intermediate small P1 equal to 0.0001 and a risk tolerance (E) of 1% are employed. The number of years that we would need to wait to exceed the 1% chance of an escape is only 6.7 years, well within the estimated 10 years for the research to be completed. If P1 is equal to 0.002, as calculated from the CDC statistics, there would be a 1% chance of an escape in less than a year (y = 0.33 year).

If P1 is really as low as Fouchier suggests, we would need to wait 670 years to reach a 1% chance of escape, an elapsed time that would appear to make the research enterprise safe in some researchers’ thinking, but risk equals likelihood times consequences, and consequences such as fatalities could be very high for a human-contagious influenza virus with a high case fatality rate. This would lead to an intolerable number of fatalities even using Fouchier's low P1 estimate. Potential fatalities for the enterprise and the fatality burden for each lab in the enterprise were quantified for his very low P1 of 1 × 10–6 in my published criticism (4) of Fouchier's million-year calculation. The conclusion there was that each lab in the enterprise would carry the potential burden of over 14 fatalities per year. “To put this fatality burden number in perspective, no Institutional Review Board tasked with assessing human subject research would approve a proposed research project with 14 potential fatalities per year.”

Turning to the number of years that elapse before an escape occurs for a single lab in Table 2, for a 1% chance of escape with the intermediate P1, it would take 100 years of research to exceed the 1% risk tolerance. For Fouchier's low P1, it would take 10,050 years to reach a 1% chance of an escape, making the research seem quite safe.

I suspect that most researchers in the enterprise use this reasoning to justify the safety of their own lab, but this kind of thinking is flawed, as argued over 200 years ago by the philosopher Immanuel Kant for his “categorical imperative,” which is the cornerstone of his moral reasoning: “Act only according to that maxim whereby you can at the same time will that it should become a universal law without contradiction.” The “it” in the quote is labs in the research enterprise. (Immanuel Kant's categorical imperative and the examples used here were called to my attention by my colleague, the late Edward Sylvester, a science journalist with a strong background in philosophy.)

At the risk of trivializing Kant's complicated moral reasoning, a few examples should make the categorical imperative argument clearer. Is it really acceptable for a manufacturing company to dump mercury in the ocean, because that one factory's output would not be enough to pose any danger to us when we consume fish? Is there nothing wrong if I buy a gas guzzler that gets 10 miles per gallon and has faulty emissions control, since my car's individual contribution to climate destruction is minimal?
“What if everyone researched live smallpox?” has been implicitly answered according to Kant's categorical imperative by everyone agreeing to limit research to two places.

Clearly, the magnitude of the basic probability (P1) is critically important in assessing the risk of the research enterprise, and its magnitude is a point of contention. Finding a good estimate of this basic probability should be a major focus in Gryphon Scientific's risk-benefit assessment.

Fouchier has other criticisms of my comments that I feel should be addressed. His response is problematic in several ways. In addressing the problems, I will quote frequently from my comments and from his response to make sure that it is clear what was said.

The biggest problem is that Dr. Fouchier does not once address my calculation of potential fatalities and fatality burden that employs his low probability of an undetected or unreported LAI escaping from his laboratory. Instead, he chooses to argue against my peripheral comments that his probability is likely much too low. His focus unfortunately draws attention away from my calculation that finds intolerable numbers of potential fatalities and the fatality burden.

I number specific comments below to keep each point separate.

1. Dr. Fouchier writes (5)

Dr. Klotz suggests that incidents at the U.S. CDC laboratories and the long history of escape of LAI agents and other escapes from laboratories show that my estimates of the likelihood of LAIs occurring at the Erasmus MC facility are too low.


The CDC's shipping of an H5N1 virus-contaminated sample to the USDA and similar incidents show the importance of not underestimating human error, especially if one considers the influenza lab at the CDC to be one of the top federal labs in the country. Although biosecurity measures have improved greatly over the years, human nature has not. Laboratory accidents will happen, and laboratory workers will get infected, not realize it or not admit it, and so take the infection home. The Achilles’ heel in Fouchier's argument is that no number of safety procedures can provide for human error.

While the history of escapes should make us worry that the probability may be very high, here the difference between Fouchier and me is moot since I employ his low probability in my calculations.

2. Dr. Fouchier writes (5)

Dr. Klotz proposes to multiply the low likelihood of LAIs by 300, based on an estimated 30 laboratories involved in the “whole research enterprise” for 10 years, and assumes that part of this research enterprise may lack the rigorous safety practices in place at Erasmus MC. Both assumptions are wrong, to the best of my knowledge; just over a handful of laboratories have worked on airborne transmission of avian influenza viruses, each of which has rigorous safety practices in place.


Our disagreement here is because we define “research enterprise” differently. I defined it as research on potential pandemic pathogens with NIH funding (influenza and SARS category pathogens) and labs otherwise funded. He defines it as only influenza virus research. I implied that the whole research enterprise includes the other pathogens by picking the number 30, doubling the NIH's 15 projects subject to the pause. Perhaps I should have been explicit by listing the pathogen categories as I have just done. In addition, some of the laboratories throughout the world conducting this research that are not funded by the NIH may have lax safety standards.

Thus, both of my assumptions were likely correct. In this article, however, I meet Fouchier half way by considering only avian influenza virus research.

3. Dr. Fouchier writes (5)

Another key aspect is that Dr. Klotz estimates the likelihood of onward transmission from a case of LAI as 0.1 (10%), in contrast to my justification for an adjusted likelihood of <1 × 10–5, based on the specific conditions under which the research is performed, without providing a rationale for that important deviation.


I certainly do provide a rationale for the 10% likelihood of LAI (4) through references 8 and 9 (risk assessment studies).

Summarizing the literature, Lipsitch and Inglesby estimate the probability that a community LAI leads to a global spread (pandemic) to be 5 to 60%. This range is consistent with the 5 to 15% range found by Merler and coworkers (8) and with the 1 to 30% range found in a focused risk assessment (9) for infection spread beginning on crowded public transportation.


Furthermore, there is a rather arcane subject in probability, branching theory, which allows prediction of the likelihood of uncontrolled spread of any pathogen based on its observed reproductive number (Ro) value and the variance to mean of the Ro. A large variance to mean could occur due to superspreaders, for instance, some people infected with SARS virus. For a wide range of Ro values, Lipsitch and coworkers have calculated the probability of uncontrolled spread (see Fig. 4a in their study [9]). For a single infected individual with an Ro of 2, the probability of an uncontrolled outbreak ranges from 10% (spread of Ros) to 80% (uniform Ro).

Thus, the pandemic likelihood from a single infected individual is potentially large. I suspect that future risk assessments will confirm that once a highly contagious potentially pandemic pathogen escapes, the probability of an uncontrolled outbreak is significant, leading again to a focus on the probability of a laboratory escape as the important factor.

Fouchier mentions vaccination and antivirals (5) as factors that reduce onward transmission. Antivirals would not be prescribed for undetected LAIs. Vaccines may reduce viral replication in the index case, but active virus may still be present when the infected person leaves the laboratory, potentially infecting unvaccinated persons. The annual flu vaccine is sometimes less than 50% effective, so it is unclear if vaccinated laboratory workers are protected by the laboratory vaccine strain.

I would classify vaccination and antivirals, effective or not, as inside laboratory measures. But if an LAI escapes, clearly these measures were not effective in preventing the undetected or unreported LAI. Again, we come back to the probability of escape from a laboratory as a key challenge in this debate.

Once an undetected or unreported LAI from a highly contagious pathogen escapes, it is out of Fouchier's control. Its global spread will depend on the reproductive number, Ro, and other factors external to Fouchier's laboratory.


Fouchier claims (3) that “the viruses are ferret adapted rather than human adapted,” which could lead to a lower Ro in humans. Among the different mutated viruses presumably under development in his laboratory, some could be highly transmissible and deadly in humans. We will never know, for testing them on humans is, fortunately, unethical. Of course if one escaped….

The argument of being ferret adapted and not human adapted is misleading. First, it cannot be proved. Second, Fouchier's own work may have already brought an avian H5N1 virus far closer to successful replication in humans. If such a virus escaped from his laboratory, it may well adapt within the individuals in the early transmission chain and then take off in a big way. Dr. Fouchier and the field do not have the knowledge to know just how short of a successful virus they have engineered. That is why they are doing this work.

4. Dr. Fouchier concludes (5) the following.

Finally, Dr. Klotz describes the (apocalyptic) scenario of an influenza pandemic with 140 million fatalities based on a 10% case-fatality rate in 20% of the world's population. These numbers not only ignore the scientifically justifiable counterarguments raised before (2) but also are at odds with the documented influenza pandemics of the past. In my view, the “gain-of-function” debate has suffered from the apocalyptic scenarios that are provided as factual whereas they provide estimates that are far beyond the observed worst cases (8).


It is estimated that the 2009 pandemic influenza virus infected 20% of the world's population. The 1918 H1N1 “Spanish” flu killed perhaps 2% of its victims. The H5N1 avian influenza virus, the subject of Fouchier's research, kills about 50% of those who are infected through direct contact with poultry. The scenario I use as an example represents a combination of these three real events. While this scenario has not yet and may never occur in nature, it is a possible scenario perhaps more likely from a laboratory escape.

Since the consequences of most scenarios, even one on a par with seasonal influenza—several hundred thousand deaths—would be catastrophic and unacceptable, it behooves us to be exceedingly careful in deciding which potential pandemic pathogen research should be allowed. For much of this research, the potential risk far outweighs the potential benefits.

APPENDIX


Derivation of equations for determining numbers of years to a lab escape.

Let P1 be the yearly probability of escape of a pathogen from a single lab. The first question to be asked is “what is the probability of at least one escape from one of the n labs conducting research on the pathogen for y years?” The probability of no escapes in y years for a single lab is (1 − P1)y. For y years and n labs, the probability of no escapes is (1 − P1)yn.

The probability of at least one escape in y years from one of the n labs (E) is

1−(1−P1)yn [3]

Solving equation 3 for y will allow this question to be answered.

log(1−E)=log(1−P1)yxn=y×n×log(1−P1), [4]

where

y=(1/n)×[log(1−E)/log(1−P1)]

Checking the limit for equation 4, if there is no likelihood of escape, P1 is equal to 0, log(1) is equal to 0, and as expected, y is equal to ∞.

Another observation about equation 4 is that the number of years of research, y, which must elapse before we reach our risk tolerance is inversely proportional to the number of labs, n.

ACKNOWLEDGMENT

I thank Simon Wain-Hobson for comments and contributions to the text.

Copyright © 2015 Klotz.

This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

REFERENCES

1. Herfst S, Fouchier RA, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell EM, Bestebroer TM, Burke DF, Smith DJ, Rimmelzwaan GF, Osterhaus AD, Fouchier RA. 2012. Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336:1534–1541. doi:10.1126/science.1213362.Abstract/FREE Full TextGoogle Scholar
2. U.S. Department of Health and Human Services. 2014. U.S. Government gain-of-function deliberative process and research funding pause on selected gain-of-function research involving influenza, MERS, and SARS viruses. U.S. Department of Health and Human Services, Washington, DC. http://www.phe.gov/s3/dualuse/documents ... pdf.Google Scholar
3. Fouchier RA. 2015. Studies on influenza virus transmission between ferrets: the public health risks revisited. mBio 6(1):e02560-14. doi:10.1128/mBio.02560-14.FREE Full TextGoogle Scholar
4. Klotz LC. 2015. Comments on Fouchier's calculation of risk and elapsed time for escape of a laboratory-acquired infection from his laboratory. mBio 6(2):e00268-15. doi:10.1128/mBio.00268-15.FREE Full TextGoogle Scholar
5. Fouchier RA. 2015. Reply to “Comments on Fouchier's calculation of risk and elapsed time for escape of a laboratory-acquired infection from his laboratory.” mBio 6(2):e00407-15. doi:10.1128/mBio.00407-15.FREE Full TextGoogle Scholar
6. Klotz LC, Sylvester EJ. 2014. The consequences of a lab escape of a potential pandemic pathogen. Front Public Health 2:116. doi:10.3389/fpubh.2014.00116.CrossRefPubMedGoogle Scholar
7. Henkel RD, Miller T, Weyant RS. 2012. Monitoring select agent theft, loss and release reports in the United States—2004–2010. Appl Biosaf 18:171–180. http://www.absa.org/abj/abj/121704FAHenkel.pdf.Google Scholar
8. Wikipedia contributors. Accessed 8 June 2015. Categorical imperative, on Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Categorica ... ive.Google Scholar
9. Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, Gopalakrishna G, Chew SK, Tan CC, Samore MH, Fisman D, Murray M. 2003. Transmission dynamics and control of severe acute respiratory syndrome. Science 300:1966–1970. doi:10.1126/science.1086616.Abstract/FREE Full TextGoogle Scholar
admin
Site Admin
 
Posts: 36172
Joined: Thu Aug 01, 2013 5:21 am

Re: U.S. government gave $3.7 million grant to Wuhan lab at

Postby admin » Wed Aug 26, 2020 12:00 am

I'm finally taking the time to do a full write up on COVID-19 because the ignorance and lack of critical thinking by the majority of people on this site is really pissing me off. And because this sub is one of the few left that is not manipulated by corrupt mods.
byu/MaximilianKohler
Reddit.com
8/16/20

NOTICE: THIS WORK MAY BE PROTECTED BY COPYRIGHT

YOU ARE REQUIRED TO READ THE COPYRIGHT NOTICE AT THIS LINK BEFORE YOU READ THE FOLLOWING WORK, THAT IS AVAILABLE SOLELY FOR PRIVATE STUDY, SCHOLARSHIP OR RESEARCH PURSUANT TO 17 U.S.C. SECTION 107 AND 108. IN THE EVENT THAT THE LIBRARY DETERMINES THAT UNLAWFUL COPYING OF THIS WORK HAS OCCURRED, THE LIBRARY HAS THE RIGHT TO BLOCK THE I.P. ADDRESS AT WHICH THE UNLAWFUL COPYING APPEARED TO HAVE OCCURRED. THANK YOU FOR RESPECTING THE RIGHTS OF COPYRIGHT OWNERS.


I'm finally taking the time to do a full write up on COVID-19 because the ignorance and lack of critical thinking by the majority of people on this site is really pissing me off. And because this sub is one of the few left that is not manipulated by corrupt mods.

Preface:

I shouldn't have to preface with this, but I probably do: I agree "Trump bad". He's a senile, low functioning, sociopathic narcissist. He handled this crisis as ineptly as he's handled virtually everything else. That is not reason to politicize a crisis to this extent, while rejecting all critical thinking and remaining wilfully ignorant.

The way this crisis has been politicized and polarized has been massively detrimental to both the welfare of the population, and to the already abysmal level of critical thinking, objectivism, rationality, nuance, etc..

I am actually going to move most of the preface from the beginning to the end. Because of how polarized, political, and faction-based the discussion has become, I think that a majority of people who read the preface would simply downvote and remain wilfully ignorant about the rest. So I'm going to start with the facts and evidence, and hope there are enough redditors left who care about those.

Here are some of the things you're not seeing due to the manipulation of content (in large part by moderators, but also by votes) all over reddit:

Who is at risk from this virus?

Primarily people who are both old and unhealthy. And to a much lesser degree, people who are unhealthy but not elderly.

Yet again, I should not have to preface with this, but I am in the high-risk category. I have been chronically ill for many years (despite full-time, years of tremendous efforts). I am not making this argument from a privileged position.

More young people have it, but only the elderly get symptoms. Screenshot from covid.is. Dutch citation.

Mostly effects the elderly and people with underlying health conditions: https://www.cdc.gov/mmwr/volumes/69/wr/mm6924e2.htm - https://www.cdc.gov/mmwr/volumes/69/wr/mm6928e1.htm

Nearly half of hospitalized COVID-19 patients without a prior diabetes diagnosis have hyperglycemia, and the latter is an independent predictor of mortality at 28 days https://old.reddit.com/r/ScientificNutr ... _patients/

In Italy only 0.2% of all deaths were people under age 40, 59.9% had 3 or more serious comorbidities, only 3% of all deaths had no comorbidities and median death age is 81 (May 2020) https://www.epicentro.iss.it/en/coronav ... y_2020.pdf

CDC Director: Threat Of Suicide, Drugs, Flu To Youth ‘Far Greater’ Than Covid (Jul 2020) https://archive.vn/wip/bXM7U

Doctors from Stanford and UCLA: It’s time to end the state of emergency over COVID-19 (Jun 2020) https://archive.vn/4x2pQ “These infection fatality rates are remarkably low and are similar to the fatality rate for the seasonal flu.” “The virus is 10 times less fatal than we first thought.”

42% of all COVID-19 deaths are taking place in facilities that house 0.62% of the U.S. population (nursing homes and assisted living facilities) https://www.forbes.com/sites/theapothec ... f3213674cd

Official death rates per the CDC vary from month to month. Estimated overall fatality rate of those infected with the virus – with and without symptoms – would be 0.26% (Jun 2020) https://www.usatoday.com/story/news/fac ... 269331002/

Various websites quote wildly varying death rates, to as much as 5.2% of infected people. There is clearly bias all over the place. But only 1% of the US population has been infected.

Dutch CDC: 98% of infections go without barely any symptoms https://viruswaarheid.nl/medisch/van-di ... de-mensen/

WHO Says Studies Put Coronavirus Mortality Rate at 0.6% https://www.bloomberg.com/news/videos/2 ... -0-6-video

The COVID Panic Is a Lesson in Using Statistics to Get Your Way in Politics (Jul 2020) https://mises.org/wire/covid-panic-less ... y-politics

COVID-19: There have been approximately 760,213 deaths reported worldwide. Flu: The World Health Organization estimates that 290,000 to 650,000 people die of flu-related causes every year worldwide. https://www.hopkinsmedicine.org/health/ ... vs-the-flu

People citing the number of people who have died are frequently being misleading. The human population has almost quadrupled over the past 100 years: http://thedatadreamer.com/wp-content/up ... -Chart.png. So of course vastly more people are going to be impacted by anything. Even rates are going to go up due to increased population density. But rates are still the most accurate statistic.

Consequences of acting vs not acting, and economics:
It is idiotic and unethical to not fully inform ourselves and then weigh the consequences of our actions. The fact that there are so many adults who do not understand this is extremely alarming.

Millions of people die every year around the globe. We cannot currently prevent all deaths, and we don't even attempt to, in large part due to the costs/consequences of the interventions being too large.

Democracy Now covers economic, social, and health consequences of using quarantines/stay-at-home orders to combat COVID-19:

The content goes far beyond the quoted headlines.

U.N. Warns of Lockdown's “Potentially Catastrophic” Economic Toll on Children - reduced household income, school meal programs, maternal and newborn care: https://www.democracynow.org/2020/4/17/headlines

Nearly 1 in 5 U.S. Children Going Hungry as Unemployment Surges to Great Depression Levels. EU Warns Pandemic Economic Recession Will Be Worst in History https://www.democracynow.org/2020/5/7/headlines

“Diarrhea, Dehydration, Hunger, Exhaustion”: India’s Rural Poor Suffer Most Under Lockdown https://www.democracynow.org/2020/5/22/ ... neoliberal

Bolivian Protesters Demand End to Coronavirus Lockdown as Hunger Mounts https://www.democracynow.org/2020/5/20/headlines

Oxfam Warns COVID-19 Pandemic Could Push 122 Million to Brink of Starvation https://www.democracynow.org/2020/7/9/headlines

Study Warns 1.1 Million Children Could Die From Secondary Impacts as Pandemic Interrupts Access to Food & Medical Care (May 2020) https://www.democracynow.org/2020/5/21/ ... lity_rates

PBS covers food chain and economic problems: https://www.youtube.com/watch?v=vjfLXrke66I

Beyond the public health crisis, there's a massive economic and humanitarian crisis that is emerging because of this lockdown. People who are not monthly wage workers don't have any savings, so, they're practically facing severe starvation. https://www.pbs.org/newshour/show/dense ... -challenge

Watch through to Sen Pat Toomey's interview: https://www.youtube.com/watch?v=BoPelzsFjYk&t=365

State reopening plans force trade-offs between health and economy https://www.pbs.org/newshour/show/state ... nd-economy

Dr. Anthony Fauci says staying closed for too long could cause 'irreparable damage' (May 2020) https://www.cnbc.com/amp/2020/05/22/dr- ... amage.html

Doctors on front line of worst-hit city in world say it’s time to end shutdown (May 2020) https://www.telegraph.co.uk/news/2020/0 ... -shutdown/

CDC director: Keeping schools closed poses greater health threat to children than reopening (Jul 2020) https://thehill.com/policy/healthcare/5 ... o-children

The risks of keeping schools closed far outweigh the benefits (Jul 2020) https://www.economist.com/leaders/2020/ ... e-benefits

The Results Are In for Remote Learning: It Didn’t Work. The pandemic forced schools into a crash course in online education. Problems piled up quickly. (WSJ, Jun 2020) https://archive.fo/cm9I5

‘The Biggest Monster’ Is Spreading. And It’s Not the Coronavirus. - Tuberculosis kills 1.5 million people each year. Lockdowns and supply-chain disruptions threaten progress against the disease as well as H.I.V. and malaria. https://www.nytimes.com/2020/08/03/heal ... laria.html

COVID-related hunger could kill more people than the virus https://unglobalcompact.org/take-action ... -the-virus

UNICEF analysis predicts 6000 child deaths PER DAY due to COVID response https://www.unicef.ie/stories/impact-covid-19-children/

Lockdown 'killed two people for every three who died of coronavirus' at peak of outbreak. Estimates show 16,000 people died through missed medical care by May 1, while virus killed 25,000 in same period (Aug 2020) https://www.telegraph.co.uk/news/2020/0 ... ronavirus/

One example of many: 31yo mother dies from cancer after treatment is delayed due to coronavirus. https://archive.vn/wip/WAPyL

CDC: 11% of US adults seriously considered suicide in June https://www.businessinsider.com.au/cdc- ... une-2020-8

CDC: One quarter of young adults contemplated suicide during pandemic (Aug 2020) https://www.politico.com/news/2020/08/1 ... mic-394832

Coronavirus pandemic may lead to 75,000 "deaths of despair" from suicide, drug and alcohol abuse, study says (May 2020) https://www.cbsnews.com/news/coronaviru ... mic-75000/

It is ‘inhumane and heartless’ not to recognise the human costs of lockdowns (Jul 2020) https://www.skynews.com.au/details/_6176537337001

Ever since the UK entered “lockdown”, those pushing for it to end have been labelled “callous” or “selfish” or accused of putting profits before people. Meanwhile millions are unemployed and a global famine is on the horizon. The lockdown will kill more people than the virus, and needs to be ended. (May 2020) https://off-guardian.org/2020/05/12/opp ... ore-people

More Than Half of U.S. Business Closures Permanent (Jul 2020) https://www.bloomberg.com/news/articles ... -yelp-says

Study between Finland and Sweden indicates school closings had no measurable impact on number of cases in children. https://www.folkhalsomyndigheten.se/con ... ildren.pdf

Reopening schools in Denmark did not worsen outbreak https://www.reuters.com/article/us-heal ... SKBN2341N7

New US Centers for Disease Control and Prevention guidelines on education and child care come down hard in favor of opening schools, saying children don't suffer much from coronavirus, are less likely than adults to spread it and suffer from being out of school. (Jul 2020) https://www.cnn.com/2020/07/23/health/c ... index.html

Three large Southern states that moved aggressively to reopen amid the coronavirus crisis have seen new cases and deaths largely hold steady since then https://nypost.com/2020/05/22/no-corona ... s-re-open/

As Wisconsin completely reopened last month, they have not seen the dire consequences that were predicted for them. https://www.wbay.com/content/news/Wisco ... 08001.html

The first-to-reopen state maintains a Covid-19 death rate well below those of northeastern states—though you’d never know it from the media coverage. https://www.city-journal.org/covid-19-georgia-reopening

The number of cases in Arizona is quickly decreasing, despite open restaurants, barber shops and churches https://archive.vn/V5vZ1

There is already a major problem with overexpenditures on end of life care https://archive.vn/UbC0K#selection-223.18-223.19 - this is not "saving lives", this is slightly postponing deaths.

When I first heard India was shutting down I was shocked and horrified. One has to be tremendously out of touch to not know that huge swaths of developing country's populations live day to day and will literally starve to death if you prevent them from going to work. And developing countries do not have the same economic means to provide monetary and food welfare to their populations. After seeing the coverage of it on Democracy Now it seemed clear to me that it was a privileged minority shutting down the whole country to protect themselves with complete disregard for the millions of poor people who would suffer severely.

And even beyond developing countries' inability to provide welfare to their citizens, there are global consequences to even just developed countries shutting down. It puts millions of people in developing countries out of work, causing them severe hardship.

This is made worse by the fact that:

"57% of Mumbai slumdwellers have Covid antibodies. Experts believe herd immunity can be achieved when around 60% of the population has been exposed to the virus. Estimated fatality rate of 0.05-0.10%" [1]. And other Indian cities have similarly low infection fatality rates (IFR) of 0.02% and 0.08%. And an IFR of 0.1% for India.

There's a popular and prevalent notion on reddit that the economy is some abstract thing that doesn't matter. As you can see above, it's not "lives vs economics", it's "lives vs other lives that will be harmed by shutting down the economy".

It's been appalling to see virtually 100% of the left-wing in the US supporting the shutdowns with the myopic mindset of "we're doing a good thing by protecting the vulnerable". And seemingly entirely ignorant and unable to think for themselves about the consequences. It's been very interesting to see this issue split down political lines in the US, with the right-wing advocating against the shutdowns and the left-wing supporting them. This mantra that I've seen before seems applicable here – "the right is evil, the left is incompetent". I'm sure other variations of that mantra may be more appropriate.

Incompetence and misinformation:
Both of these things are widespread. Including among "professionals". Assuming that every degree holder is well informed, competent, intelligent, and in agreement, is naive. Given that the reddit demographic is young, it's not surprising how common this notion is on reddit. There are major problems among professionals of all kinds: https://archive.fo/ofBvs#selection-809.0-809.1

Yes, I realize how problematic and dystopian this is. If you can't trust professionals/degree holders, it's total chaos. However, it's the reality. That reality is incredibly disturbing to me. Which is why I've spent years writing about it and trying to get people to do something to fix it. Ignoring that reality is not a fix.

Analysis: England's COVID-19 death toll is wrong. "You could have been tested positive in February, have no symptoms, then be hit by a bus in July and you’d be recorded as a Covid death.” https://archive.vn/wip/6SXR4

Article title: "Perfectly Healthy 16-Year-Old Died Suddenly from COVID-19". Article Content: Kid was diabetic and obese. https://archive.vn/wip/i6aV2

Twitter: @Sciencing_Bi - fake professor account, claims to have died of COVID-19, blaming the university where @Sciencing_Bi supposedly worked for making people teach on campus during the pandemic https://heavy.com/news/2020/08/sciencin ... ghlin-asu/ - https://gizmodo.com/science-twitter-got ... 1844591277

(@NateSilver538): I've seen a few too many mainstream media stories of "unusual" COVID cases where the most likely explanation is a false positive or a false negative test and the article doesn't really even explore the possibility at all. https://archive.vn/jJ4hA

New York Times retracts cover story on a 26 year old ER doctor in NY said to have died of COVID-19: https://web.archive.org/web/20200528053 ... 5335043072 - https://archive.vn/NpreZ#selection-3251.0-3255.12

Highly upvoted r/science thread with a misleading title claiming that children are spreaders of the virus. Commenters point out the misleading title and link to other studies that show children do not spread the virus, and asymptomatic spread is rare: https://archive.vn/wip/HsBIm

How the media has us thinking all wrong about the coronavirus, by Emily Oster, professor of economics https://www.washingtonpost.com/opinions ... ronavirus/

Censorship:

There are degree holders who moderate many major reddit subs, and have been corruptly, unethically, and unscientifically manipulating content. Here's one example: https://archive.vn/iQtIq

Here are other examples of moderators manipulating content on reddit in regards to COVID-19:

r/economics censored discussions https://archive.vn/UbC0K#selection-223.18-223.19 - https://archive.vn/wip/DDwDh

Banned from r/covid19 for pasting a link to a news article about increase in poverty due to lockdowns: https://archive.vn/Oo2yr#selection-823.0-823.1

r/california_politics censored discussion: https://archive.vn/Dc5VT#selection-1709.9-1709.10

Then muted for 28 days after mod demonstrates complete apathy for facts, evidence, and science: https://www.scribd.com/document/4721652 ... nd-science

That is exactly what is occurring all over reddit, and has been for years.

Coronavirus Censorship Crisis, by Matt Taibbi https://taibbi.substack.com/p/temporary ... censorship - covers experts getting things wrong, expert & media bias and conflicting messaging, attacking questions instead of behaving scientifically, and censorship on social media.

The result of all that misinformation, censorship, and thus ignorance:

Poll:

Jul 2020 https://www.kekstcnc.com/media/2793/kek ... wave-4.pdf

- Poll Question: How many people in your country have had COVID-19?

- Americans Answered: 20% (66M)

- Reality: 1% (3.3M)

- Poll Question: How many people in your country have died from COVID-19?

- Americans Answered: 9% (29.5M)

- Reality: 0.04% (131K)

Americans overstated the death number by 225 times.

Another poll showing similar trends.

Despite the extremely low risks (as detailed above) for children from this virus, people are frequently using deceptive, appeal-to-emotion fallacies along the lines of "think of the children". It seems that people are doing this due to one or more of:

Ignorance

Self-preservation/selfishness

Political motivations

r/LockdownSkepticism seems to be one of the few bastions of rational, objective, independent thought and information. According to the widespread propaganda on reddit you would expect that sub to only be MAGA extremists. Yet it is not. There is a myriad of information there from highly reputable sources (including many left-leaning ones) that are nowhere to be found on other reddit subs, simply because they are contradictory to the pro-shutdown propaganda that inundates virtually everywhere else on reddit.

Top links: https://old.reddit.com/r/LockdownSkepticism/top/ - https://archive.vn/uy2KZ

EDIT: A week after I created this post, CGP Grey, someone very popular on reddit, created a rational video on COVID-19 lockdowns. Typically his videos would get to the front page of reddit within a couple hours. This video though? After 1 hour my upvote was the only one. https://archive.vn/2YWmh#selection-3197.13-3201.1. This really typifies the behavior of redditors and coverage of COVID-19 here.

Sweden:

Sweden's reaction was by far the most sensible, yet they're forced to apologize because all anyone weighs are the COVID-19 deaths, and if you dare consider any other side effects from the shutdowns you get labeled a monster. https://www.snopes.com/ap/2020/06/03/to ... us-better/

Ignore the headline, see the comments: https://archive.vn/wip/JcFSb

Sweden, Which Never Had Lockdown, Sees COVID-19 Cases Plummet as Rest of Europe Suffers Spike (Jul 2020) https://archive.vn/wip/eCNOU

COVID appears done in Sweden. (Jul 2020) https://archive.vn/wip/ceKJa

Epidemiologist: Sweden’s COVID Response Isn’t Unorthodox. The Rest of the World’s Is (May 2020) https://fee.org/articles/epidemiologist ... orld-s-is/

Study between Finland and Sweden indicates school closings had no measurable impact on number of cases in children. https://www.folkhalsomyndigheten.se/con ... ildren.pdf

The scientist behind lockdown in the UK has admitted that Sweden has achieved roughly the same suppression of coronavirus without draconian restrictions (Jun 2020) https://www.telegraph.co.uk/news/2020/0 ... ce-uk-has/

Why Sweden’s COVID-19 Strategy Is Quietly Becoming the World’s Strategy (May 2020) https://fee.org/articles/why-sweden-s-c ... -strategy/

Norway PM regrets taking tough coronavirus lockdown measures (Jun 2020) https://au.news.yahoo.com/coronavirus-n ... 07536.html

Symptoms vs cause:

What we did and have been doing for decades is ignoring the problem (public health and chronic disease), and then only reacting to and addressing the symptoms.

That is an absolutely moronic thing to do. It makes me furious. It's a massively inefficient and wasteful allocation of resources. And making others suffer because of one group of people's poor decisions is extremely problematic. Removing the consequences of people's own poor decisions will only lead to continued poor decisions, and likely even worse ones.

Only 3% of the population even bothers to live a healthy lifestyle https://www.theatlantic.com/health/arch ... yle/475065. And now that consequences of that show up they want everyone to suffer to protect them from the consequences of their decisions.

This applies to universal healthcare as well. Spending on healthcare would be a tiny fraction of what it currently is if the majority of the population actually bothered to try and be healthy. I'm fully in favor of universal healthcare, but actions must be taken to reduce chronic disease and general poor health. Otherwise, irresponsible people are just sucking vast amounts of resources from responsible ones.

America’s obesity epidemic threatens effectiveness of any COVID vaccine https://ctmirror.org/2020/08/09/america ... d-vaccine/

Misallocation of resources:

Far more damaging things, that impact far more people, we've been ignoring: https://old.reddit.com/r/HumanMicrobiom ... ?context=3 - https://www.youtube.com/watch?v=Zk11vI-7czE

Where is all the outcry (plus trillions of dollars spent, and massive economic action) about those deaths plus the massive drops in quality of life? Quality of life can be argued to be even more important than death.

“Epidemiologists have tried to quantify this sort of loss with something they call the disability-adjusted life year. Simply put, this unit measures the estimated value of the years of healthy life lost to a disease.”

If you have a million dollars, do you spend it all to save one life, or do you spend it where it will statistically have the most impact and help the most people? Do you spend it all on a life that is ending soon or a life that has a long way to go? The former is what we've been doing with COVID.

The reaction to COVID-19 is furthering an already problematic history of overspending on end of life care: https://archive.vn/UbC0K#selection-293.18-293.19

Why people who care about the environment (especially young people) should protest COVID-19 shutdowns: https://archive.vn/S1IIC

CDC Director: Threat Of Suicide, Drugs, Flu To Youth ‘Far Greater’ Than Covid (Jul 2020) https://archive.vn/wip/bXM7U

Misc:

Besides ignorance and moderator manipulation, the following might explain some of the voting patterns on reddit.

https://archive.vn/Lj518#selection-1991.10-1991.11

/u/Sphinx91:

Reddit doesn't care. Reddit would rather have everything completely shut down to avoid even one single death , and then pat themselves on their back a job well done without looking at every single unintended consequences. The clusterfuck that is waiting for us at the end of all these "lockdowns" is gonna be way more damaging than the virus itself and I'm just waiting for this ride to end.

/u/PhineasC:

The vast majority of Redditors are 15-30 year old males with no kids. They literally have zero invested in this, and in some cases actually are students themselves who want to stay home and play video games all day. This is literally the last place to get the general public viewpoint on this issue.

An entire New Zealand city shuts down due to 4 cases (not deaths) of COVID-19: https://www.abc.net.au/news/2020-08-12/ ... n/12549920 and they're having trouble figuring out the source: https://www.todayonline.com/world/new-z ... d-auckland

How Fear, Groupthink Drove Unnecessary Global Lockdowns https://www.realclearpolitics.com/artic ... 43253.html

#stayathome is so popular because it can instantly transform you into a hero by literally doing nothing https://archive.vn/d3z49

As COVID-19 Cases Surge, Daily Deaths and the Case Fatality Rate Continue To Fall (Jul 2020) https://reason.com/2020/07/06/as-covid- ... e-to-fall/ - https://www.nytimes.com/2020/07/03/heal ... sting.html

Many COVID-19 deaths were likely people who would have died from flu: https://archive.vn/wip/BHOvP

List of questions that pro-shutdown people need to answer: https://archive.vn/M2WHH

Preface at the end!

Rightly so, redditors frequently criticize FOX News viewers, and even Republicans in general, for being anti-science, willfully ignorant, mindless sheep. Yet the behavior on reddit around COVID-19 has shown me that redditors themselves can be guilty of all the same behavior. Hysterical, ignorant, easily manipulated, emotional, reactionary, tribe mentality.

If one needed more evidence of the consequences of the majority of the population being poorly functioning, this has surely provided it.

You can see above how much information and complexity there is. Which is why it is so appalling and alarming that the majority of reddit seems to have reduced the complexity down to "virus bad, dying bad, stay home till virus goes away".

EDIT: And from the comments and voting in this thread it seems that a majority of redditors are displaying all this same behavior I just wrote about! It seems many of them did not even bother to read this post and review the evidence prior to commenting, which is quite a common behavior on reddit. Depressingly, that's exactly what the data shows as well: Facts are increasingly useless.

I've had the unfortunate experience of seeing this occur in many other instances, including parenting and healthcare, where people are only able to process "oh my god people are dying", and entirely unable to do any sort of objective, higher level, logical cost-benefit analysis that is based on facts and statistics. Instead, they simply react emotionally and drastically. The results of which are often vastly worse than had they not reacted at all. I was almost killed multiple times due to a person I know behaving in this way, and I've written about millions of other people being harmed due to this phenomenon [1].

I wanted to make this my title, but knew it would cause immediate downvotes before people even bothered to read the content:

The overreaction to COVID-19 is the most egregious misallocation of resources I've ever heard of in the entirety of human history. Objective arguments from a left-wing perspective.

I am constantly being accused of lack of empathy & compassion, and hatefulness. I have demonstrated that these accusations are not only false, but ironically, the stances and behaviors of the people leveling those accusations are what are harmful and uncompassionate.
admin
Site Admin
 
Posts: 36172
Joined: Thu Aug 01, 2013 5:21 am

Re: U.S. government gave $3.7 million grant to Wuhan lab at

Postby admin » Fri Sep 11, 2020 1:32 am

Trump explains why he downplayed coronavirus risks to the American public
by Dylan Stableford and David Knowles
Yahoo News
September 9, 2020

NOTICE: THIS WORK MAY BE PROTECTED BY COPYRIGHT

YOU ARE REQUIRED TO READ THE COPYRIGHT NOTICE AT THIS LINK BEFORE YOU READ THE FOLLOWING WORK, THAT IS AVAILABLE SOLELY FOR PRIVATE STUDY, SCHOLARSHIP OR RESEARCH PURSUANT TO 17 U.S.C. SECTION 107 AND 108. IN THE EVENT THAT THE LIBRARY DETERMINES THAT UNLAWFUL COPYING OF THIS WORK HAS OCCURRED, THE LIBRARY HAS THE RIGHT TO BLOCK THE I.P. ADDRESS AT WHICH THE UNLAWFUL COPYING APPEARED TO HAVE OCCURRED. THANK YOU FOR RESPECTING THE RIGHTS OF COPYRIGHT OWNERS.


President Trump on Wednesday acknowledged that he misled the American public about the threat of COVID-19 earlier this year in order to “reduce panic” about a virus that has so far killed nearly 200,000 people in the U.S.

Speaking to reporters at the White House, Trump was asked whether he misled the country by publicly downplaying the threat of the virus.

“Well, I think if you said ‘in order to reduce panic,’ perhaps that’s so,” Trump said. “The fact is I’m a cheerleader for this country. I love our country, and I don’t want people to be frightened. I don’t want to create panic, and certainly I’m not going to drive this country or the world into a frenzy. We want to show confidence. We want to show strength.”

According to audio excerpts from interviews that Washington Post journalist Bob Woodward conducted for his forthcoming book, “Rage,” Trump said in February that he knew COVID-19 was more deadly than the flu but wanted to “play it down” because “I don’t want to create a panic.”

With Trump’s own answers to Woodward’s questions captured on tape, the president did not attempt to deny that he downplayed the risks to the American people from the virus.

“We don’t want to jump up and down and start shouting that we have a problem that is a tremendous problem, scare everybody,” Trump added.

Asked how he can reassure Americans that they can trust what he is saying, Trump replied, “Well, I think that’s really a big part of trust. We have to have leadership. We have to show leadership, and the last thing you want to do is create a panic in the country. This was a horrible thing. It was sent to us by China.”

According to Johns Hopkins University, there have been more than 6.3 million confirmed COVID-19 cases in the United States, more by far than in any other country. Approximately 189,000 Americans have died from the virus, which originated in Wuhan, China.

Trump dismissed the suggestion that he could have saved American lives if he had been more forthright about the risks posed by the virus.

“I think if we didn’t do what we did, we would have had millions of people die,” the president said. “We closed up our country. We closed it up very, very quickly, very effectively. We, uh, did a job, we learned about this horrible disease along with the rest of the world, which had to learn about it, and then we opened it up and now we know the vulnerable, we know who it attacks, who it’s so vicious against, and I think we’ve done from every standpoint a[n] incredible job.”

Joe Biden, the Democratic nominee, quickly responded to Trump's remarks.

“I promise you that if I’m elected, I’ll always tell you the truth,” Biden tweeted. “I’ll listen to the experts and do everything I can to contain this virus. And I’ll always put your health and safety first — no matter the political cost.”
admin
Site Admin
 
Posts: 36172
Joined: Thu Aug 01, 2013 5:21 am

Re: U.S. government gave $3.7 million grant to Wuhan lab at

Postby admin » Fri Sep 18, 2020 9:28 am

'Herd mentality': Trump says US 'rounding the corner' on coronavirus, doctors and scientists disagree
by Savannah Behrmann
USA TODAY
September 15, 2020

NOTICE: THIS WORK MAY BE PROTECTED BY COPYRIGHT

YOU ARE REQUIRED TO READ THE COPYRIGHT NOTICE AT THIS LINK BEFORE YOU READ THE FOLLOWING WORK, THAT IS AVAILABLE SOLELY FOR PRIVATE STUDY, SCHOLARSHIP OR RESEARCH PURSUANT TO 17 U.S.C. SECTION 107 AND 108. IN THE EVENT THAT THE LIBRARY DETERMINES THAT UNLAWFUL COPYING OF THIS WORK HAS OCCURRED, THE LIBRARY HAS THE RIGHT TO BLOCK THE I.P. ADDRESS AT WHICH THE UNLAWFUL COPYING APPEARED TO HAVE OCCURRED. THANK YOU FOR RESPECTING THE RIGHTS OF COPYRIGHT OWNERS.


Image
[Trump] I am going to eat you.
"He tells it like it is", by Paul Noth


WASHINGTON – President Donald Trump claimed Tuesday during a televised town hall that "herd mentality" could make the coronavirus "disappear" with or without a vaccine.

During a 90-minute town hall hosted by ABC News in the must win battleground of Pennsylvania, Trump defended his repeated assertion that the virus will eventually disappear even without a vaccine, citing what he called "herd mentality," an apparent reference to "herd immunity."

ABC News' Chief Anchor George Stephanopoulos asked Trump whether the coronavirus "would go away without the vaccine?"

"Sure, over a period of time. Sure, with time it goes away --" Trump responded.

Stephanopoulos interjected: "-- And many deaths."

"And you'll develop, you'll develop herd -- like a herd mentality. It's going to be -- it's going to be herd developed -- and that's going to happen. That will all happen," Trump said.

Herd immunity is the theory that the virus is eradicated only after a high percentage of the population is infected, limiting its ability to spread.

Herd mentality, also known as mob mentality, rather means people can be influenced by the “herd” to act in ways that are emotional, rather than rational.

Dr. Anthony Fauci, Director of the National Institute of Allergy and Infectious Diseases at the National Institutes of Health, who is the nation's leading infectious disease expert, has said the “death toll would be enormous” if the country attempted herd immunity.

For COVID-19, doctors believe 60% to 80% of the population needs natural antibodies, or to be vaccinated, to achieve herd immunity.

The U.S. has reported more than 6.5 million confirmed cases. The number needed to achieve herd immunity is far more, as the U.S. population is 328.2 million.

The Washington Post calculated that nearly three million Americans would have to die for the U.S. to reach herd immunity without a vaccine.


As of Tuesday night, more than 195,000 deaths Americans have died, according to data from John Hopkins University.

The White House earlier in September denied the Trump administration has ever considered a policy of "herd immunity."

"The herd immunity so-called theory was something made up in the fanciful minds of the media. That was never something that was ever considered here at the White House," press secretary Kayleigh McEnany told reporters during a White House Press briefing.


Trump also claimed Tuesday he believes "we're rounding the corner" on the coronavirus.

However, many scientists and doctors, including Fauci, have strongly disagreed with that assertion, expressing concerns of the coronavirus mixing with flu season.

“If you're talking about getting back to a degree of normality which resembles where we were prior to COVID, it's going to be well into 2021, maybe even towards the end of 2021," Fauci said recently.

Trump defended this thinking by naming former Stanford Neuroradiology Chief Dr. Scott Atlas.

Atlas has become a White House adviser on the coronavirus, and has publicly downplayed the virus. There were reports from The Washington Post that Atlas has been pushing herd immunity inside the White House, and Trump has been listening.


Andrew Bates, Director of Rapid Response for Democrat nominee Joe Biden's campaign, tweeted: "This is the *current* PRESIDENT of the United States, whose charged with keeping the American people safe. This would literally mean millions of deaths."

Andrew Bates @AndrewBatesNC
"This is the *current* PRESIDENT of the United States, whose charged with keeping the American people safe. This would literally mean millions of deaths."
Andrew Bates@AndrewBatesNC
"It would go away without the vaccine?"
"Sure, over a period of time. Sure, with time..."
"And many deaths."
"You'll develop a herd mentality."
6:37 PM - Sep 15, 2020


During the town hall, the president also repeatedly rejected the idea that he had downplayed the severity of the virus, despite recordings from Bob Woodward's interviews in which he told the journalist he thought downplaying it would help avoid a panic.

Contributing: John Fritze, David Jackson USA TODAY
admin
Site Admin
 
Posts: 36172
Joined: Thu Aug 01, 2013 5:21 am

Re: U.S. government gave $3.7 million grant to Wuhan lab at

Postby admin » Fri Dec 11, 2020 2:00 am

‘We messed up, we let our guard down’: Former Alabama senator issues warning with last words before dying of Covid-19. Larry Dixon’s last wishes were to prevent others suffering same fate as him
by Oliver O'Connell
Independent.co.uk
12/7/20

NOTICE: THIS WORK MAY BE PROTECTED BY COPYRIGHT

YOU ARE REQUIRED TO READ THE COPYRIGHT NOTICE AT THIS LINK BEFORE YOU READ THE FOLLOWING WORK, THAT IS AVAILABLE SOLELY FOR PRIVATE STUDY, SCHOLARSHIP OR RESEARCH PURSUANT TO 17 U.S.C. SECTION 107 AND 108. IN THE EVENT THAT THE LIBRARY DETERMINES THAT UNLAWFUL COPYING OF THIS WORK HAS OCCURRED, THE LIBRARY HAS THE RIGHT TO BLOCK THE I.P. ADDRESS AT WHICH THE UNLAWFUL COPYING APPEARED TO HAVE OCCURRED. THANK YOU FOR RESPECTING THE RIGHTS OF COPYRIGHT OWNERS.


Former Republican Alabama state senator Larry Dixon has died of Covid-19 at the age of 78 - reportedly warning people of the dangers of the disease in some of his very final words.

Mr Dixon also served on the Alabama Board of Medical Examiners.

A close friend told NBC News that his last words to his wife were also a warning to the people of Alabama.

Dr David Thrasher said Mr Dixon told his wife Gaynell: “We messed up, we let our guard down.”

“Please tell everybody to be careful. This is real, and if you get diagnosed, get help immediately.”


According to Dr Thrasher, Mr Dixon believes he was exposed to the virus at an outdoor event two weeks ago. Two other attendees have since tested positive.

Early symptoms set in a few days after the event, and when they worsened Mr Dixon was placed on a ventilator. He passed away on 4 December.

Early symptoms set in a few days after the event, and when they worsened Mr Dixon was placed on a ventilator. He passed away on 4 December.

Mr Thrasher said that Mr Dixon was the “finest human being”, demonstrated by his last wish being to prevent more people from suffering from the same fate.

“He wanted to encourage people to be careful, wear a mask, don’t socially gather,” Mr Thrasher said. “He said, ‘Let’s save some lives.’”

By Monday, Alabama had recorded more than 270,000 confirmed cases of Covid-19, and the official death toll stood at 3,889, according to figures compiled by The New York Times.

Nationally, the number of cases stands at 14.8 million with more than 282,000 deaths.
admin
Site Admin
 
Posts: 36172
Joined: Thu Aug 01, 2013 5:21 am

Re: U.S. government gave $3.7 million grant to Wuhan lab at

Postby admin » Mon Dec 14, 2020 4:27 am

Scientific consensus on the COVID-19 pandemic: we need to act now
by:
Nisreen A Alwan
Rochelle Ann Burgess
Simon Ashworth
Rupert Beale
Nahid Bhadelia
Debby Bogaert
Jennifer Dowd
Isabella Eckerle
Lynn R Goldman
Trisha Greenhalgh
Deepti Gurdasani
Adam Hamdy
William P Hanage
Emma B Hodcroft
Zoë Hyde
Paul Kellam
Michelle Kelly-Irving
Florian Krammer
Marc Lipsitch
Alan McNally
Martin McKee
Ali Nouri
Dominic Pimenta
Viola Priesemann
Harry Rutter
Joshua Silver
Devi Sridhar
Charles Swanton
Rochelle P Walensky
Gavin Yamey
Hisham Ziauddeen
The Lancet
Published: October 15, 2020DOI:https://doi.org/10.1016/S0140-6736(20)32153-X

NOTICE: THIS WORK MAY BE PROTECTED BY COPYRIGHT

YOU ARE REQUIRED TO READ THE COPYRIGHT NOTICE AT THIS LINK BEFORE YOU READ THE FOLLOWING WORK, THAT IS AVAILABLE SOLELY FOR PRIVATE STUDY, SCHOLARSHIP OR RESEARCH PURSUANT TO 17 U.S.C. SECTION 107 AND 108. IN THE EVENT THAT THE LIBRARY DETERMINES THAT UNLAWFUL COPYING OF THIS WORK HAS OCCURRED, THE LIBRARY HAS THE RIGHT TO BLOCK THE I.P. ADDRESS AT WHICH THE UNLAWFUL COPYING APPEARED TO HAVE OCCURRED. THANK YOU FOR RESPECTING THE RIGHTS OF COPYRIGHT OWNERS.


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 35 million people globally, with more than 1 million deaths recorded by WHO as of Oct 12, 2020. As a second wave of COVID-19 affects Europe, and with winter approaching, we need clear communication about the risks posed by COVID-19 and effective strategies to combat them. Here, we share our view of the current evidence-based consensus on COVID-19.

SARS-CoV-2 spreads through contact (via larger droplets and aerosols), and longer-range transmission via aerosols, especially in conditions where ventilation is poor. Its high infectivity,1 combined with the susceptibility of unexposed populations to a new virus, creates conditions for rapid community spread. The infection fatality rate of COVID-19 is several-fold higher than that of seasonal influenza,2 and infection can lead to persisting illness, including in young, previously healthy people (ie, long COVID).3 It is unclear how long protective immunity lasts,4 and, like other seasonal coronaviruses, SARS-CoV-2 is capable of re-infecting people who have already had the disease, but the frequency of re-infection is unknown.5 Transmission of the virus can be mitigated through physical distancing, use of face coverings, hand and respiratory hygiene, and by avoiding crowds and poorly ventilated spaces. Rapid testing, contact tracing, and isolation are also critical to controlling transmission. WHO has been advocating for these measures since early in the pandemic.

In the initial phase of the pandemic, many countries instituted lockdowns (general population restrictions, including orders to stay at home and work from home) to slow the rapid spread of the virus. This was essential to reduce mortality,6, 7 prevent health-care services from being overwhelmed, and buy time to set up pandemic response systems to suppress transmission following lockdown. Although lockdowns have been disruptive, substantially affecting mental and physical health, and harming the economy, these effects have often been worse in countries that were not able to use the time during and after lockdown to establish effective pandemic control systems. In the absence of adequate provisions to manage the pandemic and its societal impacts, these countries have faced continuing restrictions.

This has understandably led to widespread demoralisation and diminishing trust. The arrival of a second wave and the realisation of the challenges ahead has led to renewed interest in a so-called herd immunity approach, which suggests allowing a large uncontrolled outbreak in the low-risk population while protecting the vulnerable. Proponents suggest this would lead to the development of infection-acquired population immunity in the low-risk population, which will eventually protect the vulnerable.

This is a dangerous fallacy unsupported by scientific evidence.

Any pandemic management strategy relying upon immunity from natural infections for COVID-19 is flawed. Uncontrolled transmission in younger people risks significant morbidity3 and mortality across the whole population. In addition to the human cost, this would impact the workforce as a whole and overwhelm the ability of health-care systems to provide acute and routine care. Furthermore, there is no evidence for lasting protective immunity to SARS-CoV-2 following natural infection,4 and the endemic transmission that would be the consequence of waning immunity would present a risk to vulnerable populations for the indefinite future. Such a strategy would not end the COVID-19 pandemic but result in recurrent epidemics, as was the case with numerous infectious diseases before the advent of vaccination. It would also place an unacceptable burden on the economy and health-care workers, many of whom have died from COVID-19 or experienced trauma as a result of having to practise disaster medicine. Additionally, we still do not understand who might suffer from long COVID.3 Defining who is vulnerable is complex, but even if we consider those at risk of severe illness, the proportion of vulnerable people constitute as much as 30% of the population in some regions.8 Prolonged isolation of large swathes of the population is practically impossible and highly unethical. Empirical evidence from many countries shows that it is not feasible to restrict uncontrolled outbreaks to particular sections of society. Such an approach also risks further exacerbating the socioeconomic inequities and structural discriminations already laid bare by the pandemic. Special efforts to protect the most vulnerable are essential but must go hand-in-hand with multi-pronged population-level strategies.


Once again, we face rapidly accelerating increase in COVID-19 cases across much of Europe, the USA, and many other countries across the world. It is critical to act decisively and urgently. Effective measures that suppress and control transmission need to be implemented widely, and they must be supported by financial and social programmes that encourage community responses and address the inequities that have been amplified by the pandemic. Continuing restrictions will probably be required in the short term, to reduce transmission and fix ineffective pandemic response systems, in order to prevent future lockdowns. The purpose of these restrictions is to effectively suppress SARS-CoV-2 infections to low levels that allow rapid detection of localised outbreaks and rapid response through efficient and comprehensive find, test, trace, isolate, and support systems so life can return to near-normal without the need for generalised restrictions. Protecting our economies is inextricably tied to controlling COVID-19. We must protect our workforce and avoid long-term uncertainty.

Japan, Vietnam, and New Zealand, to name a few countries, have shown that robust public health responses can control transmission, allowing life to return to near-normal, and there are many such success stories. The evidence is very clear: controlling community spread of COVID-19 is the best way to protect our societies and economies until safe and effective vaccines and therapeutics arrive within the coming months. We cannot afford distractions that undermine an effective response; it is essential that we act urgently based on the evidence.

To support this call for action, sign the John Snow Memorandum.

This work was not in any way directly or indirectly supported, funded, or sponsored by any organisation or entity. NA has experienced prolonged COVID-19 symptoms. AH advises Ligandal (unpaid advisory role), outside the submitted work. FK is collaborating with Pfizer on animal models of SARS-CoV-2, and with the University of Pennsylvania on mRNA vaccines against SARS-CoV-2. FK has also filed IP regarding serological assays and for SARS-CoV-2, which name him as inventor (pending). PK reports personal fees from Kymab, outside the submitted work; PK also has a patent ‘Monoclonal antibodies to treat and prevent infection by SARS-CoV-2 (Kymab)’ pending and is a scientific advisor to the Serology Working Group (Public Heath England), Testing Advisory Group (Department of Health and Social Care) and the Vaccines Task force (Department for Business, Energy and Industrial Strategy). ML has received honoraria from Bristol-Meyers Squibb and Sanofi Pasteur, outside the submitted work. MM is a member of Independent SAGE and Research Director European Observatory on Health Systems and Policies, which manages the COVID Health Systems Response Monitor. DS sits on the Scottish Government COVID-19 Advisory Group, has attended SAGE meetings, and is on the Royal Society DELVE initiative feeding into SAGE. CS reports grants from BMS, Ono-Pharmaceuticals, and Archer Dx (collaboration in minimal residual disease sequencing technologies), outside the submitted work; personal fees from Bristol Myers Squibb, Roche-Ventana, Ono Pharmaceutical, GlaxoSmithKline, Novartis, Celgene, Illumina, MSD, Sarah Canon Research Institute, Genentech, Bicycle Therapeutics, and Medicixi, outside the submitted work; personal fees and stock options from GRAIL and Achilles Therapeutics, outside the submitted work; and stock options from Epic Biosciences and Apogen Biotechnologies, outside the submitted work. GY directs the Center for Policy Impact in Global Health at Duke University, which has received grant funding from the Bill & Melinda Gates Foundation for policy research that includes policy analysis on COVID-19 control. All other authors declare no competing interests within the submitted work.

Signatories are listed in the appendix.
admin
Site Admin
 
Posts: 36172
Joined: Thu Aug 01, 2013 5:21 am

PreviousNext

Return to Health

Who is online

Users browsing this forum: No registered users and 8 guests

cron