Silent Spring, by Rachel Carson

Hard to overstate the significance of this topic. Unfortunately, the material in here will become more and more depressing as time goes on. Not much hope of any alternative to that.

Silent Spring, by Rachel Carson

Postby admin » Mon Aug 03, 2015 11:44 pm

Silent Spring
by Rachel Carson © 1962 by Rachel L. Carson
Copyright © renewed 1990 by Roger Christie
Introduction copyright © 2002 by Linda Lear
Afterword copyright © 2002 by Edward O. Wilson




To Albert Schweitzer who said "Man has lost the capacity to foresee and to forestall. He will end by destroying the earth."

Table of Contents:

• Acknowledgments
• Introduction by Linda Lear
• List of Principal Sources
• Afterword by Edward O. Wilson
• Index

"Perhaps no community has suffered more for the sake of a beetleless world than Sheldon, in eastern Illinois, and adjacent areas in Iroquois County. In 1954 the United States Department of Agriculture and the Illinois Agriculture Department began a program to eradicate the Japanese beetle along the line of its advance into Illinois, holding out the hope, and indeed the assurance, that intensive spraying would destroy the populations of the invading insect. The first "eradication" took place that year, when dieldrin was applied to 1400 acres by air. Another 2600 acres were treated similarly in 1955, and the task was presumably considered complete. But more and more chemical treatments were called for, and by the end of 1961, some 131,000 acres had been covered. Even in the first years of the program it was apparent that heavy losses were occurring among wildlife and domestic animals. The chemical treatments were continued, nevertheless, without consultation with either the United States Fish and Wildlife Service or the Illinois Game Management Division. (In the spring of 1960, however, officials of the federal Department of Agriculture appeared before a congressional committee in opposition to a bill that would require just such prior consultation. They declared blandly that the bill was unnecessary because cooperation and consultation were "usual." These officials were quite unable to recall situations where cooperation had not taken place "at the Washington level." In the same hearings they stated clearly their unwillingness to consult with state fish and game departments.)

Although funds for chemical control came in never-ending streams, the biologists of the Illinois Natural History Survey who attempted to measure the damage to wildlife had to operate on a financial shoestring. A mere $1100 was available for the employment of a field assistant in 1954 and no special funds were provided in 1955. Despite these crippling difficulties, the biologists assembled facts that collectively paint a picture of almost unparalleled wildlife destruction -- destruction that became obvious as soon as the program got under way.

Conditions were made to order for poisoning insect-eating birds, both in the poisons used and in the events set in motion by their application. In the early programs at Sheldon, dieldrin was applied at the rate of 3 pounds to the acre. To understand its effect on birds one need only remember that in laboratory experiments on quail dieldrin has proved to be about 50 times as poisonous as DDT. The poison spread over the landscape at Sheldon was therefore roughly equivalent to 150 pounds of DDT per acre! And this was a minimum, because there seems to have been some overlapping of treatments along field borders and in corners.

As the chemical penetrated the soil the poisoned beetle grubs crawled out on the surface of the ground, where they remained for some time before they died, attractive to insect-eating birds. Dead and dying insects of various species were conspicuous for about two weeks after the treatment. The effect on the bird populations could easily have been foretold. Brown thrashers, starlings, meadowlarks, grackles, and pheasants were virtually wiped out. Robins were "almost annihilated," according to the biologists' report. Dead earthworms had been seen in numbers after a gentle rain; probably the robins had fed on the poisoned worms. For other birds, too, the once beneficial rain had been changed, through the evil power of the poison introduced into their world, into an agent of destruction. Birds seen drinking and bathing in puddles left by rain a few days after the spraying were inevitably doomed.

The birds that survived may have been rendered sterile. Although a few nests were found in the treated area, a few with eggs, none contained young birds.

Among the mammals ground squirrels were virtually annihilated; their bodies were found in attitudes characteristic of violent death by poisoning. Dead muskrats were found in the treated areas, dead rabbits in the fields. The fox squirrel had been a relatively common animal in the town; after the spraying it was gone.

It was a rare farm in the Sheldon area that was blessed by the presence of a cat after the war on beetles was begun. Ninety per cent of all the farm cats fell victims to the dieldrin during the first season of spraying. This might have been predicted because of the black record of these poisons in other places. Cats are extremely sensitive to all insecticides and especially so, it seems, to dieldrin. In western Java in the course of the antimalarial program carried out by the World Health Organization, many cats are reported to have died. In central Java so many were killed that the price of a cat more than doubled. Similarly, the World Health Organization, spraying in Venezuela, is reported to have reduced cats to the status of a rare animal.

In Sheldon it was not only the wild creatures and the domestic companions that were sacrificed in the campaign against an insect. Observations on several flocks of sheep and a herd of beef cattle are indicative of the poisoning and death that threatened livestock as well. The Natural History Survey report describes one of these episodes as follows:

The sheep ... were driven into a small, untreated bluegrass pasture across a gravel road from a field which had been treated with dieldrin spray on May 6. Evidently some spray had drifted across the road into the pasture, for the sheep began to show symptoms of intoxication almost at once ... They lost interest in food and displayed extreme restlessness, following the pasture fence around and around apparently searching for a way out ... [They] refused to be driven, bleated almost continuously, and stood with their heads lowered; they were finally carried from the pasture ... They displayed great desire for water. Two of the sheep were found dead in the stream passing through the pasture, and the remaining sheep were repeatedly driven out of the stream, several having to be dragged forcibly from the water. Three of the sheep eventually died; those remaining recovered to all outward appearances.


Incidents like the eastern Illinois spraying raise a question that is not only scientific but moral. The question is whether any civilization can wage relentless war on life without destroying itself, and without losing the right to be called civilized.

These insecticides are not selective poisons; they do not single out the one species of which we desire to be rid. Each of them is used for the simple reason that it is a deadly poison. It therefore poisons all life with which it comes in contact: the cat beloved of some family, the farmer's cattle, the rabbit in the field, and the horned lark out of the sky. These creatures are innocent of any harm to man. Indeed, by their very existence they and their fellows make his life more pleasant. Yet he rewards them with a death that is not only sudden but horrible. Scientific observers at Sheldon described the symptoms of a meadowlark found near death: "Although it lacked muscular coordination and could not fly or stand, it continued to beat its wings and clutch with its toes while lying on its side. Its beak was held open and breathing was labored." Even more pitiful was the mute testimony of the dead ground squirrels, which "exhibited a characteristic attitude in death. The back was bowed, and the forelegs with the toes of the feet tightly clenched were drawn close to the thorax ... The head and neck were outstretched and the mouth often contained dirt, suggesting that the dying animal had been biting at the ground."

By acquiescing in an act that can cause such suffering to a living creature, who among us is not diminished as a human being?


"The means by which insects resist chemicals probably vary and as yet are not thoroughly understood. Some of the insects that defy chemical control are thought to be aided by a structural advantage, but there seems to be little actual proof of this. That immunity exists in some strains is clear, however, from observations like those of Dr. Briejer, who reports watching flies at the Pest Control Institute at Springforbi, Denmark, "disporting themselves in DDT as much at home as primitive sorcerers cavorting over red-hot coals."

Dr. Briejer says:

'It is more than clear that we are traveling a dangerous road. ... We are going to have to do some very energetic research on other control measures, measures that will have to be biological, not chemical. Our aim should be to guide natural processes as cautiously as possible in the desired direction rather than to use brute force . ...

We need a more high-minded orientation and a deeper insight, which I miss in many researchers. Life is a miracle beyond our comprehension, and we should reverence it even where we have to struggle against it.... The resort to weapons such as insecticides to control it is a proof of insufficient knowledge and of an incapacity so to guide the processes of nature that brute force becomes unnecessary. Humbleness is in order; there is no excuse for scientific conceit here.'"

-- "Silent Spring," by Rachel Carson
Site Admin
Posts: 35790
Joined: Thu Aug 01, 2013 5:21 am

Re: Silent Spring, by Rachel Carson

Postby admin » Mon Aug 03, 2015 11:45 pm

"The sedge is wither'd from the lake,
And no birds sing."

"I am pessimistic about the human race because it is too ingenious for its own good. Our approach to nature is to beat it into submission. We would stand a better chance of survival if we accommodated ourselves to this planet and viewed it appreciatively instead of skeptically and dictatorially."
-- E. B. WHITE

I have not wished to burden the text with footnotes but I realize that many of my readers will wish to pursue some of the subjects discussed. I have therefore included a list of my principal sources of information, arranged by chapter and page, in an appendix which will be found at the back of the book.
-- R.C.


IN A LETTER written in January 1958, Olga Owens Huckins told me of her own bitter experience of a small world made lifeless, and so brought my attention sharply back to a problem with which I had long been concerned. I then realized I must write this book.

During the years since then I have received help and encouragement from so many people that it is not possible to name them all here. Those who have freely shared with me the fruits of many years' experience and study represent a wide variety of government agencies in this and other countries, many universities and research institutions, and many professions. To all of them I express my deepest thanks for time and thought so generously given.

In addition my special gratitude goes to those who took time to read portions of the manuscript and to offer comment and criticism based on their own expert knowledge. Although the final responsibility for the accuracy and validity of the text is mine, I could not have completed the book without the generous help of these specialists: L. G. Bartholomew, M.D., of the Mayo Clinic, John J. Biesele of the University of Texas, A.W.A Brown of the University of Western Ontario, Morton S. Biskind, M.D., of Westport, Connecticut, C. J. Briejer of the Plant Protection Service in Holland, Clarence Cottam of the Rob and Bessie Welder Wildlife Foundation, George Crile, Jr., M.D., of the Cleveland Clinic, Frank Egler of Norfolk, Connecticut, Malcolm M. Hargraves, M.D., of the Mayo Clinic, W. C. Hueper, M.D., of the National Cancer Institute, C. J. Kerswill of the Fisheries Research Board of Canada, Olaus Murie of the Wilderness Society, A. D. Pickett of the Canada Department of Agriculture, Thomas G. Scott of the Illinois Natural History Survey, Charence Tarzwell of the Taft Sanitary Engineering Center, and George J. Wallace of Michigan State University.

Every writer of a book based on many diverse facts owes much to the skill and helpfulness of librarians. I owe such a debt to many, but especially to Ida K. Johnston of the Department of the Interior Library and to Thelma Robinson of the Library of the National Institutes of Health.

As my editor, Paul Brooks has given steadfast encouragement over the years and has cheerfully accommodated his plans to postponements and delays. For this, and for his skilled editorial judgment, I am everlastingly grateful.

I have had capable and devoted assistance in the enormous task of library research from Dorothy Algire, Jeanne Davis, and Bette Haney Duff. And I could not possibly have completed the task, under circumstances sometimes difficult, except for the faithful help of my housekeeper, Ida Sprow.

Finally, I must acknowledge our vast indebtedness to a host of people, many of them unknown to me personally, who have nevertheless made the writing of this book seem worthwhile. These are the people who first spoke out against the reckless and irresponsible poisoning of the world that man shares with all other creatures, and who are even now fighting the thousands of small battles that in the end will bring victory for sanity and common sense in our accommodation to the world that surrounds us.

Site Admin
Posts: 35790
Joined: Thu Aug 01, 2013 5:21 am

Re: Silent Spring, by Rachel Carson

Postby admin » Mon Aug 03, 2015 11:48 pm

by Linda Lear

HEADLINES IN THE New York Times in July 1962 captured the national sentiment: "Silent Spring is now noisy summer." In the few months between the New Yorker's serialization of Silent Spring in June and its publication in book form that September, Rachel Carson's alarm touched off a national debate on the use of chemical pesticides, the responsibility of science, and the limits of technological progress. When Carson died barely eighteen months later in the spring of 1964, at the age of fifty-six, she had set in motion a course of events that would result in a ban on the domestic production of DDT and the creation of a grass-roots movement demanding protection of the environment through state and federal regulation. Carson's writing initiated a transformation in the relationship between humans and the natural world and stirred an awakening of public environmental consciousness.

It is hard to remember the cultural climate that greeted Silent Spring and to understand the fury that was launched against its quietly determined author. Carson's thesis that we were subjecting ourselves to slow poisoning by the misuse of chemical pesticides that polluted the environment may seem like common currency now, but in 1962 Silent Spring contained the kernel of social revolution. Carson wrote at a time of new affluence and intense social conformity. The cold war, with its climate of suspicion and intolerance, was at its zenith. The chemical industry, one of the chief beneficiaries of postwar technology, was also one of the chief authors of the nation's prosperity. DDT enabled the conquest of insect pests in agriculture and of ancient insect-borne disease just as surely as the atomic bomb destroyed America's military enemies and dramatically altered the balance of power between humans and nature. The public endowed chemists, at work in their starched white coats in remote laboratories, with almost divine wisdom. The results of their labors were gilded with the presumption of beneficence. In postwar America, science was god, and science was male.

Carson was an outsider who had never been part of the scientific establishment, first because she was a woman but also because her chosen field, biology, was held in low esteem in the nuclear age. Her career path was nontraditional; she had no academic affiliation, no institutional voice. She deliberately wrote for the public rather than for a narrow scientific audience. For anyone else, such independence would have been an enormous detriment. But by the time Silent Spring was published, Carson's outsider status had become a distinct advantage. As the science establishment would discover, it was impossible to dismiss her.


Rachel Carson first discovered nature in the company of her mother, a devotee of the nature study movement. She wandered the banks of the Allegheny River in the pristine village of Springdale, Pennsylvania, just north of Pittsburgh, observing the wildlife and plants around her and particularly curious about the habits of birds.

Her childhood, though isolated by poverty and family turmoil, was not lonely. She loved to read and displayed an obvious talent for writing, publishing her first story in a children's literary magazine at the age of ten. By the time she entered Pennsylvania College for Women (now Chatham College), she had read widely in the English Romantic tradition and had articulated a personal sense of mission, her ''vision splendid." A dynamic female zoology professor expanded her intellectual horizons by urging her to take the daring step of majoring in biology rather than English. In doing so, Carson discovered that science not only engaged her mind but gave her "something to write about." She decided to pursue a career in science, aware that in the 1930s there were few opportunities for women.

Scholarships allowed her to study at Woods Hole Biological Laboratory, where she fell in love with the sea, and at Johns Hopkins University, where she was isolated, one of a handful of women in marine biology. She had no mentors and no money to continue in graduate school after completing an M.A. in zoology in 1932. Along the way she worked as a laboratory assistant in the school of public health, where she was lucky enough to receive some training in experimental genetics. As employment opportunities in science dwindled, she began writing articles about the natural history of Chesapeake Bay for the Baltimore Sun. Although these were years of financial and emotional struggle, Carson realized that she did not have to choose between science and writing, that she had the talent to do both.

From childhood on, Carson was interested in the long history of the earth, in its patterns and rhythms, its ancient seas, its evolving life forms. She was an ecologist -- fascinated by intersections and connections but always aware of the whole -- before that perspective was accorded scholarly legitimacy. A fossil shell she found while digging in the hills above the Allegheny as a little girl prompted questions about the creatures of the oceans that had once covered the area. At Johns Hopkins, an experiment with changes in the salinity of water in an eel tank prompted her to study the life cycle of those ancient fish that migrate from continental rivers to the Sargasso Sea. The desire to understand the sea from a nonhuman perspective led to her first book, Under the Sea-Wind, which featured a common sea bird, the sanderling, whose life cycle, driven by ancestral instincts, the rhythms of the tides, and the search for food, involves an arduous journey from Patagonia to the Arctic Circle. From the outset Carson acknowledged her "kinship with other forms of life" and always wrote to impress that relationship on her readers.

Carson was confronted with the problem of environmental pollution at a formative period in her life. During her adolescence the second wave of the industrial revolution was turning the Pittsburgh area into the iron and steel capital of the Western world. The little town of Springdale, sandwiched between two huge coal-fired electric plants, was transformed into a grimy wasteland, its air fouled by chemical emissions, its river polluted by industrial waste. Carson could not wait to escape. She observed that the captains of industry took no notice of the defilement of her hometown and no responsibility for it. The experience made her forever suspicious of promises of "better living through chemistry" and of claims that technology would create a progressively brighter future.

In 1936 Carson landed a job as a part-time writer of radio scripts on ocean life for the federal Bureau of Fisheries in Baltimore. By night she wrote freelance articles for the Sun describing the pollution of the oyster beds of the Chesapeake by industrial runoff; she urged changes in oyster seeding and dredging practices and political regulation of the effluents pouring into the bay. She signed her articles "R. L. Carson," hoping that readers would assume that the writer was male and thus take her science seriously.

A year later Carson became a junior aquatic biologist for the Bureau of Fisheries, one of only two professional women there, and began a slow but steady advance through the ranks of the agency, which became the U.S. Fish and Wildlife Service in 1939. Her literary talents were quickly recognized, and she was assigned to edit other scientists' field reports, a task she turned into an opportunity to broaden her scientific knowledge, deepen her connection with nature, and observe the making of science policy. By 1949 Carson was editor in chief of all the agency's publications, writing her own distinguished series on the new U.S. wildlife refuge system and participating in interagency conferences on the latest developments in science and technology.

Her government responsibilities slowed the pace of her own writing. It took her ten years to synthesize the latest research on oceanography, but her perseverance paid off. She became an overnight literary celebrity when The Sea Around Us was first serialized in The New Yorker in 1951. The book won many awards, including the National Book Award for nonfiction, and Carson was elected to the American Academy of Arts and Letters. She was lauded not only for her scientific expertise and synthesis of wide-ranging material but also for her lyrical, poetic voice. The Sea Around Us and its best-selling successor, The Edge of the Sea, made Rachel Carson the foremost science writer in America. She understood that there was a deep need for writers who could report on and interpret the natural world. Readers around the world found comfort in her clear explanations of complex science, her description of the creation of the seas, and her obvious love of the wonders of nature. Hers was a trusted voice in a world riddled by uncertainty.

Whenever she spoke in public, however, she took notice of ominous new trends. "Intoxicated with a sense of his own power," she wrote, "[mankind] seems to be going farther and farther into more experiments for the destruction of himself and his world." Technology, she feared, was moving on a faster trajectory than mankind's sense of moral responsibility. In 1945 she tried to interest Reader's Digest in the alarming evidence of environmental damage from the widespread use of the new synthetic chemical DDT and other long-lasting agricultural pesticides. By 1957 Carson believed that these chemicals were potentially harmful to the long-term health of the whole biota. The pollution of the environment by the profligate use of toxic chemicals was the ultimate act of human hubris, a product of ignorance and greed that she felt compelled to bear witness against. She insisted that what science conceived and technology made possible must first be judged for its safety and benefit to the "whole stream of life." "There would be no peace for me," she wrote to a friend, "if I kept silent."


Silent Spring, the product of her unrest, deliberately challenged the wisdom of a government that allowed toxic chemicals to be put into the environment before knowing the long-term consequences of their use. Writing in language that everyone could understand and cleverly using the public's knowledge of atomic fallout as a reference point, Carson described how chlorinated hydrocarbons and organic phosphorus insecticides altered the cellular processes of plants, animals, and, by implication, humans. Science and technology, she charged, had become the handmaidens of the chemical industry's rush for profits and control of markets. Rather than protecting the public from potential harm, the government not only gave its approval to these new products but did so without establishing any mechanism of accountability. Carson questioned the moral right of government to leave its citizens unprotected from substances they could neither physically avoid nor publicly question. Such callous arrogance could end only in the destruction of the living world. "Can anyone believe it is possible to lay down such a barrage of poisons on the surface of the earth without making it unfit for all life?" she asked. "They should not be called 'insecticides' but 'biocides.'"

In Silent Spring, and later in testimony before a congressional committee, Carson asserted that one of the most basic human rights must surely be the "right of the citizen to be secure in his own home against the intrusion of poisons applied by other persons." Through ignorance, greed, and negligence, government had allowed "poisonous and biologically potent chemicals" to fall "indiscriminately into the hands of persons largely or wholly ignorant of their potentials for harm." When the public protested, it was "fed little tranquillizing pills of half-truth" by a government that refused to take responsibility for or acknowledge evidence of damage. Carson challenged such moral vacuity. "The obligation to endure," she wrote, "gives us the right to know."

In Carson's view, the postwar culture of science that arrogantly claimed dominion over nature was the philosophic root of the problem. Human beings, she insisted, were not in control of nature but simply one of its parts: the survival of one part depended upon the health of all. She protested the "contamination of man's total environment" with substances that accumulate in the tissues of plants, animals, and humans and have the potential to alter the genetic structure of organisms.

Carson argued that the human body was permeable and, as such, vulnerable to toxic substances in the environment. Levels of exposure could not be controlled, and scientists could not accurately predict the long-term effects of bioaccumulation in the cells or the impact of such a mixture of chemicals on human health. She categorically rejected the notion proposed by industry that there were human "thresholds" for such poisons, as well as its corollary, that the human body had "assimilative capacities" that rendered the poisons harmless. In one of the most controversial parts of her book, Carson presented evidence that some human cancers were linked to pesticide exposure. That evidence and its subsequent elaboration by many other researchers continue to fuel one of the most challenging and acrimonious debates within the scientific and environmental communities.

Carson's concept of the ecology of the human body was a major departure in our thinking about the relationship between humans and the natural environment. It had enormous consequences for our understanding of human health as well as our attitudes toward environmental risk. Silent Spring proved that our bodies are not boundaries. Chemical corruption of the globe affects us from conception to death. Like the rest of nature, we are vulnerable to pesticides; we too are permeable. All forms of life are more alike than different.

Carson believed that human health would ultimately reflect the environment's ills. Inevitably this idea has changed our response to nature, to science, and to the technologies that devise and deliver contamination. Although the scientific community has been slow to acknowledge this aspect of Carson's work, her concept of the ecology of the human body may well prove to be one of her most lasting contributions.

In 1962, however, the multimillion-dollar industrial chemical industry was not about to allow a former government editor, a female scientist without a Ph.D. or an institutional affiliation, known only for her lyrical books on the sea, to undermine public confidence in its products or to question its integrity. It was clear to the industry that Rachel Carson was a hysterical woman whose alarming view of the future could be ignored or, if necessary, suppressed. She was a "bird and bunny lover," a woman who kept cats and was therefore clearly suspect. She was a romantic "spinster" who was simply overwrought about genetics. In short, Carson was a woman out of control. She had overstepped the bounds of her gender and her science. But just in case her claims did gain an audience, the industry spent a quarter of a million dollars to discredit her research and malign her character. In the end, the worst they could say was that she had told only one side of the story and had based her argument on unverifiable case studies.

There is another, private side to the controversy over Silent Spring. Unbeknown to her detractors in government and industry, Carson was fighting a far more powerful enemy than corporate outrage: a rapidly metastasizing breast cancer. The miracle is that she lived to complete the book at all, enduring a "catalogue of illnesses," as she called it. She was immune to the chemical industry's efforts to malign her; rather, her energies were focused on the challenge of survival in order to bear witness to the truth as she saw it. She intended to disturb and disrupt, and she did so with dignity and deliberation.

After Silent Spring caught the attention of President John F. Kennedy, federal and state investigations were launched into the validity of Carson's claims. Communities that had been subjected to aerial spraying of pesticides against their wishes began to organize on a grass-roots level against the continuation of toxic pollution. Legislation was readied at all governmental levels to defend against a new kind of invisible fallout. The scientists who had claimed a "holy grail" of knowledge were forced to admit a vast ignorance. While Carson knew that one book could not alter the dynamic of the capitalist system, an environmental movement grew from her challenge, led by a public that demanded that science and government be held accountable. Carson remains an example of what one committed individual can do to change the direction of society. She was a revolutionary spokesperson for the rights of all life. She dared to speak out and confront the issue of the destruction of nature and to frame it as a debate over the quality of all life.

Rachel Carson knew before she died that her work had made a difference. She was honored by medals and awards, and posthumously received the Presidential Medal of Freedom in 1981. But she also knew that the issues she had raised would not be solved quickly or easily and that affluent societies are slow to sacrifice for the good of the whole. It was not until six years after Carson's death that concerned Americans celebrated the first Earth Day and that Congress passed the National Environmental Policy Act establishing the Environmental Protection Agency as a buffer against our own handiwork. The domestic production of DDT was banned, but not its export, ensuring that the pollution of the earth's atmosphere, oceans, streams, and wildlife would continue unabated. DDT is found in the livers of birds and fish on every oceanic island on the planet and in the breast milk of every mother. In spite of decades of environmental protest and awareness, and in spite of Rachel Carson's apocalyptic call alerting Americans to the problem of toxic chemicals, reduction of the use of pesticides has been one of the major policy failures of the environmental era. Global contamination is a fact of modern life.

Silent Spring compels each generation to reevaluate its relationship to the natural world. We are a nation still debating the questions it raised, still unresolved as to how to act for the common good, how to achieve environmental justice. In arguing that public health and the environment, human and natural, are inseparable, Rachel Carson insisted that the role of the expert had to be limited by democratic access and must include public debate about the risks of hazardous technologies. She knew then, as we have learned since, that scientific evidence by its very nature is incomplete and scientists will inevitably disagree on what constitutes certain proof of harm. It is difficult to make public policy in such cases when government's obligation to protect is mitigated by the nature of science itself.

Rachel Carson left us a legacy that not only embraces the future of life, in which she believed so fervently, but sustains the human spirit. She confronted us with the chemical corruption of the globe and called on us to regulate our appetites -- a truly revolutionary stance -- for our self-preservation. "It seems reasonable to believe," she wrote, "that the more clearly we can focus our attention on the wonders and realities of the universe about us, the less taste we shall have for the destruction of our race. Wonder and humility are wholesome emotions, and they do not exist side by side with a lust for destruction."

Wonder and humility are just some of the gifts of Silent Spring. They remind us that we, like all other living creatures, are part of the vast ecosystems of the earth, part of the whole stream of life. This is a book to relish: not for the dark side of human nature, but for the promise of life's possibility.
Site Admin
Posts: 35790
Joined: Thu Aug 01, 2013 5:21 am

Re: Silent Spring, by Rachel Carson

Postby admin » Mon Aug 03, 2015 11:50 pm

1. A Fable for Tomorrow


THERE WAS ONCE a town in the heart of America where all life seemed to live in harmony with its surroundings. The town lay in the midst of a checkerboard of prosperous farms, with fields of grain and hillsides of orchards where, in spring, white clouds of bloom drifted above the green fields. In autumn, oak and maple and birch set up a blaze of color that flamed and flickered across a backdrop of pines. Then foxes barked in the hills and deer silently crossed the fields, half hidden in the mists of the fall mornings.

Along the roads, laurel, viburnum and alder, great ferns and wildflowers delighted the traveler's eye through much of the year. Even in winter the roadsides were places of beauty, where countless birds came to feed on the berries and on the seed heads of the dried weeds rising above the snow. The countryside was, in fact, famous for the abundance and variety of its bird life, and when the flood of migrants was pouring through in spring and fall people traveled from great distances to observe them. Others came to fish the streams, which flowed clear and cold out of the hills and contained shady pools where trout lay. So it had been from the days many years ago when the first settlers raised their houses, sank their wells, and built their barns.

Then a strange blight crept over the area and everything began to change. Some evil spell had settled on the community: mysterious maladies swept the flocks of chickens; the cattle and sheep sickened and died. Everywhere was a shadow of death. The farmers spoke of much illness among their families. In the town the doctors had become more and more puzzled by new kinds of sickness appearing among their patients. There had been several sudden and unexplained deaths, not only among adults but even among children, who would be stricken suddenly while at play and die within a few hours.

There was a strange stillness. The birds, for example -- where had they gone? Many people spoke of them, puzzled and disturbed. The feeding stations in the backyards were deserted. The few birds seen anywhere were moribund; they trembled violently and could not fly. It was a spring without voices. On the mornings that had once throbbed with the dawn chorus of robins, catbirds, doves, jays, wrens, and scores of other bird voices there was now no sound; only silence lay over the fields and woods and marsh.

On the farms the hens brooded, but no chicks hatched. The farmers complained that they were unable to raise any pigs -- the litters were small and the young survived only a few days. The apple trees were coming into bloom but no bees droned among the blossoms, so there was no pollination and there would be no fruit.

The roadsides, once so attractive, were now lined with browned and withered vegetation as though swept by fire. These, too, were silent, deserted by all living things. Even the streams were now lifeless. Anglers no longer visited them, for all the fish had died.

In the gutters under the eaves and between the shingles of the roofs, a white granular powder still showed a few patches; some weeks before it had fallen like snow upon the roofs and the lawns, the fields and streams.

No witchcraft, no enemy action had silenced the rebirth of new life in this stricken world. The people had done it themselves.


This town does not actually exist, but it might easily have a thousand counterparts in America or elsewhere in the world. I know of no community that has experienced all the misfortunes I describe. Yet every one of these disasters has actually happened somewhere, and many real communities have already suffered a substantial number of them. A grim specter has crept upon us almost unnoticed, and this imagined tragedy may easily become a stark reality we all shall know.

What has already silenced the voices of spring in countless towns in America? This book is an attempt to explain.
Site Admin
Posts: 35790
Joined: Thu Aug 01, 2013 5:21 am

Re: Silent Spring, by Rachel Carson

Postby admin » Mon Aug 03, 2015 11:54 pm

2. The Obligation to Endure


THE HISTORY OF LIFE on earth has been a history of interaction between living things and their surroundings. To a large extent, the physical form and the habits of the earth's vegetation and its animal life have been molded by the environment. Considering the whole span of earthly time, the opposite effect, in which life actually modifies its surroundings, has been relatively slight. Only within the moment of time represented by the present century has one species -- man -- acquired significant power to alter the nature of his world.

During the past quarter century this power has not only increased to one of disturbing magnitude but it has changed in character. The most alarming of all man's assaults upon the environment is the contamination of air, earth, rivers, and sea with dangerous and even lethal materials. This pollution is for the most part irrecoverable; the chain of evil it initiates not only in the world that must support life but in living tissues is for the most part irreversible. In this now universal contamination of the environment, chemicals are the sinister and little-recognized partners of radiation in changing the very nature of the world -- the very nature of its life. Strontium 90, released through nuclear explosions into the air, comes to earth in rain or drifts down as fallout, lodges in soil, enters into the grass or corn or wheat grown there, and in time takes up its abode in the bones of a human being, there to remain until his death. Similarly, chemicals sprayed on croplands or forests or gardens lie long in soil, entering into living organisms, passing from one to another in a chain of poisoning and death. Or they pass mysteriously by underground streams until they emerge and, through the alchemy of air and sunlight, combine into new forms that kill vegetation, sicken cattle, and work unknown harm on those who drink from once pure wells. As Albert Schweitzer has said, "Man can hardly even recognize the devils of his own creation."

It took hundreds of millions of years to produce the life that now inhabits the earth -- eons of time in which that developing and evolving and diversifying life reached a state of adjustment and balance with its surroundings. The environment, rigorously shaping and directing the life it supported, contained elements that were hostile as well as supporting. Certain rocks gave out dangerous radiation; even within the light of the sun, from which all life draws its energy, there were short-wave radiations with power to injure. Given time -- time not in years but in millennia -- life adjusts, and a balance has been reached. For time is the essential ingredient; but in the modern world there is no time.

The rapidity of change and the speed with which new situations are created follow the impetuous and heedless pace of man rather than the deliberate pace of nature. Radiation is no longer merely the background radiation of rocks, the bombardment of cosmic rays, the ultraviolet of the sun that have existed before there was any life on earth; radiation is now the unnatural creation of man's tampering with the atom. The chemicals to which life is asked to make its adjustment are no longer merely the calcium and silica and copper and all the rest of the minerals washed out of the rocks and carried in rivers to the sea; they are the synthetic creations of man's inventive mind, brewed in his laboratories, and having no counterparts in nature.

To adjust to these chemicals would require time on the scale that is nature's; it would require not merely the years of a man's life but the life of generations. And even this, were it by some miracle possible, would be futile, for the new chemicals come from our laboratories in an endless stream; almost five hundred annually find their way into actual use in the United States alone. The figure is staggering and its implications are not easily grasped -- 500 new chemicals to which the bodies of men and animals are required somehow to adapt each year, chemicals totally outside the limits of biologic experience.

Among them are many that are used in man's war against nature. Since the mid-1940's over 200 basic chemicals have been created for use in killing insects, weeds, rodents, and other organisms described in the modern vernacular as "pests"; and they are sold under several thousand different brand names.

These sprays, dusts, and aerosols are now applied almost universally to farms, gardens, forests, and homes -- nonselective chemicals that have the power to kill every insect, the "good" and the "bad," to still the song of birds and the leaping of fish in the streams, to coat the leaves with a deadly film, and to linger on in soil -- all this though the intended target may be only a few weeds or insects. Can anyone believe it is possible to lay down such a barrage of poisons on the surface of the earth without making it unfit for all life? They should not be called "insecticides," but "biocides."

The whole process of spraying seems caught up in an endless spiral. Since DDT was released for civilian use, a process of escalation has been going on in which ever more toxic materials must be found. This has happened because insects, in a triumphant vindication of Darwin's principle of the survival of the fittest, have evolved super races immune to the particular insecticide used, hence a deadlier one has always to be developed -- and then a deadlier one than that. It has happened also because, for reasons to be described later, destructive insects often undergo a "flareback," or resurgence, after spraying, in numbers greater than before. Thus the chemical war is never won, and all life is caught in its violent crossfire.

Along with the possibility of the extinction of mankind by nuclear war, the central problem of our age has therefore become the contamination of man's total environment with such substances of incredible potential for harm -- substances that accumulate in the tissues of plants and animals and even penetrate the germ cells to shatter or alter the very material of heredity upon which the shape of the future depends.

Some would-be architects of our future look toward a time when it will be possible to alter the human germ plasm by design. But we may easily be doing so now by inadvertence, for many chemicals, like radiation, bring about gene mutations. It is ironic to think that man might determine his own future by something so seemingly trivial as the choice of an insect spray.

All this has been risked -- for what? Future historians may well be amazed by our distorted sense of proportion. How could intelligent beings seek to control a few unwanted species by a method that contaminated the entire environment and brought the threat of disease and death even to their own kind? Yet this is precisely what we have done. We have done it, moreover, for reasons that collapse the moment we examine them. We are told that the enormous and expanding use of pesticides is necessary to maintain farm production. Yet is our real problem not one of overproduction? Our farms, despite measures to remove acreages from production and to pay farmers not to produce, have yielded such a staggering excess of crops that the American taxpayer in 1962 is paying out more than one billion dollars a year as the total carrying cost of the surplus-food storage program. And is the situation helped when one branch of the Agriculture Department tries to reduce production while another states, as it did in 1958, "It is believed generally that reduction of crop acreages under provisions of the Soil Bank will stimulate interest in use of chemicals to obtain maximum production on the land retained in crops."

All this is not to say there is no insect problem and no need of control. I am saying, rather, that control must be geared to realities, not to mythical situations, and that the methods employed must be such that they do not destroy us along with the insects.


The problem whose attempted solution has brought such a train of disaster in its wake is an accompaniment of our modern way of life. Long before the age of man, insects inhabited the earth -- a group of extraordinarily varied and adaptable beings. Over the course of time since man's advent, a small percentage of the more than half a million species of insects have come into conflict with human welfare in two principal ways: as competitors for the food supply and as carriers of human disease.

Disease-carrying insects become important where human beings are crowded together, especially under conditions where sanitation is poor, as in time of natural disaster or war or in situations of extreme poverty and deprivation. Then control of some sort becomes necessary. It is a sobering fact, however, as we shall presently see, that the method of massive chemical control has had only limited success, and also threatens to worsen the very conditions it is intended to curb.

Under primitive agricultural conditions the farmer had few insect problems. These arose with the intensification of agriculture -- the devotion of immense acreages to a single crop.
Such a system set the stage for explosive increases in specific insect populations. Single-crop farming does not take advantage of the principles by which nature works; it is agriculture as an engineer might conceive it to be. Nature has introduced great variety into the landscape, but man has displayed a passion for simplifying it. Thus he undoes the built-in checks and balances by which nature holds the species within bounds. One important natural check is a limit on the amount of suitable habitat for each species. Obviously then, an insect that lives on wheat can build up its population to much higher levels on a farm devoted to wheat than on one in which wheat is intermingled with other crops to which the insect is not adapted.

The same thing happens in other situations. A generation or more ago, the towns of large areas of the United States lined their streets with the noble elm tree. Now the beauty they hopefully created is threatened with complete destruction as disease sweeps through the elms, carried by a beetle that would have only limited chance to build up large populations and to spread from tree to tree if the elms were only occasional trees in a richly diversified planting.

Another factor in the modern insect problem is one that must be viewed against a background of geologic and human history: the spreading of thousands of different kinds of organisms from their native homes to invade new territories. This worldwide migration has been studied and graphically described by the British ecologist Charles Elton in his recent book The Ecology of Invasions. During the Cretaceous Period, some hundred million years ago, flooding seas cut many land bridges between continents and living things found themselves confined in what Elton calls "colossal separate nature reserves." There, isolated from others of their kind, they developed many new species. When some of the land masses were joined again, about 15 million years ago, these species began to move out into new territories -- a movement that is not only still in progress but is now receiving considerable assistance from man.

The importation of plants is the primary agent in the modern spread of species, for animals have almost invariably gone along with the plants, quarantine being a comparatively recent and not completely effective innovation. The United States Office of Plant Introduction alone has introduced almost 100,000 species and varieties of plants from all over the world. Nearly half of the 180 or so major insect enemies of plants in the United States are accidental imports from abroad, and most of them have come as hitchhikers on plants.

In new territory, out of reach of the restraining hand of the natural enemies that kept down its numbers in its native land, an invading plant or animal is able to become enormously abundant. Thus it is no accident that our most troublesome insects are introduced species.

These invasions, both the naturally occurring and those dependent on human assistance, are likely to continue indefinitely. Quarantine and massive chemical campaigns are only extremely expensive ways of buying time. We are faced, according to Dr. Elton, "with a life-and-death need not just to find new technological means of suppressing this plant or that animal"; instead we need the basic knowledge of animal populations and their relations to their surroundings that will "promote an even balance and damp down the explosive power of outbreaks and new invasions."

Much of the necessary knowledge is now available but we do not use it. We train ecologists in our universities and even employ them in our governmental agencies but we seldom take their advice. We allow the chemical death rain to fall as though there were no alternative, whereas in fact there are many, and our ingenuity could soon discover many more if given opportunity.

Have we fallen into a mesmerized state that makes us accept as inevitable that which is inferior or detrimental, as though having lost the will or the vision to demand that which is good? Such thinking, in the words of the ecologist Paul Shepard, "idealizes life with only its head out of water, inches above the limits of toleration of the corruption of its own environment ... Why should we tolerate a diet of weak poisons, a home in insipid surroundings, a circle of acquaintances who are not quite our enemies, the noise of motors with just enough relief to prevent insanity? Who would want to live in a world which is just not quite fatal?"

Yet such a world is pressed upon us. The crusade to create a chemically sterile, insect-free world seems to have engendered a fanatic zeal on the part of many specialists and most of the so-called control agencies. On every hand there is evidence that those engaged in spraying operations exercise a ruthless power. "The regulatory entomologists ... function as prosecutor, judge and jury, tax assessor and collector and sheriff to enforce their own orders," said Connecticut entomologist Neely Turner. The most flagrant abuses go unchecked in both state and federal agencies.

It is not my contention that chemical insecticides must never be used. I do contend that we have put poisonous and biologically potent chemicals indiscriminately into the hands of persons largely or wholly ignorant of their potentials for harm. We have subjected enormous numbers of people to contact with these poisons, without their consent and often without their knowledge. If the Bill of Rights contains no guarantee that a citizen shall be secure against lethal poisons distributed either by private individuals or by public officials, it is surely only because our forefathers, despite their considerable wisdom and foresight, could conceive of no such problem.

I contend, furthermore, that we have allowed these chemicals to be used with little or no advance investigation of their effect on soil, water, wildlife, and man himself. Future generations are unlikely to condone our lack of prudent concern for the integrity of the natural world that supports all life.

There is still very limited awareness of the nature of the threat. This is an era of specialists, each of whom sees his own problem and is unaware of or intolerant of the larger frame into which it fits. It is also an era dominated by industry, in which the right to make a dollar at whatever cost is seldom challenged. When the public protests, confronted with some obvious evidence of damaging results of pesticide applications, it is fed little tranquilizing pills of half truth. We urgently need an end to these false assurances, to the sugar coating of unpalatable facts. It is the public that is being asked to assume the risks that the insect controllers calculate. The public must decide whether it wishes to continue on the present road, and it can do so only when in full possession of the facts. In the words of Jean Rostand, "The obligation to endure gives us the right to know."
Site Admin
Posts: 35790
Joined: Thu Aug 01, 2013 5:21 am

Re: Silent Spring, by Rachel Carson

Postby admin » Mon Aug 03, 2015 11:54 pm

3. Elixirs of Death


FOR THE FIRST TIME in the history of the world, every human being is now subjected to contact with dangerous chemicals, from the moment of conception until death. In the less than two decades of their use, the synthetic pesticides have been so thoroughly distributed throughout the animate and inanimate world that they occur virtually everywhere. They have been recovered from most of the major river systems and even from streams of groundwater flowing unseen through the earth. Residues of these chemicals linger in soil to which they may have been applied a dozen years before. They have entered and lodged in the bodies of fish, birds, reptiles, and domestic and wild animals so universally that scientists carrying on animal experiments find it almost impossible to locate subjects free from such contamination. They have been found in fish in remote mountain lakes, in earthworms burrowing in soil, in the eggs of birds -- and in man himself. For these chemicals are now stored in the bodies of the vast majority of human beings, regardless of age. They occur in the mother's milk, and probably in the tissues of the unborn child.

All this has come about because of the sudden rise and prodigious growth of an industry for the production of man-made or synthetic chemicals with insecticidal properties. This industry is a child of the Second World War. In the course of developing agents of chemical warfare, some of the chemicals created in the laboratory were found to be lethal to insects. The discovery did not come by chance: insects were widely used to test chemicals as agents of death for man.

The result has been a seemingly endless stream of synthetic insecticides. In being man-made -- by ingenious laboratory manipulation of the molecules, substituting atoms, altering their arrangement -- they differ sharply from the simpler insecticides of prewar days. These were derived from naturally occurring minerals and plant products -- compounds of arsenic, copper, lead, manganese, zinc, and other minerals, pyrethrum from the dried flowers of chrysanthemums, nicotine sulphate from some of the relatives of tobacco, and rotenone from leguminous plants of the East Indies.

What sets the new synthetic insecticides apart is their enormous biological potency. They have immense power not merely to poison but to enter into the most vital processes of the body and change them in sinister and often deadly ways. Thus, as we shall see, they destroy the very enzymes whose function is to protect the body from harm, they block the oxidation processes from which the body receives its energy, they prevent the normal functioning of various organs, and they may initiate in certain cells the slow and irreversible change that leads to malignancy.

Yet new and more deadly chemicals are added to the list each year and new uses are devised so that contact with these materials has become practically worldwide. The production of synthetic pesticides in the United States soared from 124,-259,000 pounds in 1947 to 637,666,000 pounds in 1960 -- more than a fivefold increase. The wholesale value of these products was well over a quarter of a billion dollars. But in the plans and hopes of the industry this enormous production is only a beginning.

A Who's Who of pesticides is therefore of concern to us all. If we are going to live so intimately with these chemicals -- eating and drinking them, taking them into the very marrow of our bones -- we had better know something about their nature and their power.

Although the Second World War marked a turning away from inorganic chemicals as pesticides into the wonder world of the carbon molecule, a few of the old materials persist. Chief among these is arsenic, which is still the basic ingredient in a variety of weed and insect killers. Arsenic is a highly toxic mineral occurring widely in association with the ores of various metals, and in very small amounts in volcanoes, in the sea, and in spring water. Its relations to man are varied and historic. Since many of its compounds are tasteless, it has been a favorite agent of homicide from long before the time of the Borgias to the present. Arsenic is present in English chimney soot and along with certain aromatic hydrocarbons is considered responsible for the carcinogenic (or cancer-causing) action of the soot, which was recognized nearly two centuries ago by an English physician. Epidemics of chronic arsenical poisoning involving whole populations over long periods are on record. Arsenic-contaminated environments have also caused sickness and death among horses, cows, goats, pigs, deer, fishes, and bees; despite this record arsenical sprays and dusts are widely used. In the arsenic-sprayed cotton country of southern United States beekeeping as an industry has nearly died out. Farmers using arsenic dusts over long periods have been afflicted with chronic arsenic poisoning; livestock have been poisoned by crop sprays or weed killers containing arsenic. Drifting arsenic dusts from blueberry lands have spread over neighboring farms, contaminating streams, fatally poisoning bees and cows, and causing human illness. "It is scarcely possible ... to handle arsenicals with more utter disregard of the general health than that which has been practiced in our country in recent years," said Dr. W. C. Hueper, of the National Cancer Institute, an authority on environmental cancer. "Anyone who has watched the dusters and sprayers of arsenical insecticides at work must have been impressed by the almost supreme carelessness with which the poisonous substances are dispensed."


Modern insecticides are still more deadly. The vast majority fall into one of two large groups of chemicals. One, represented by DDT, is known as the "chlorinated hydrocarbons." The other group consists of the organic phosphorus insecticides, and is represented by the reasonably familiar malathion and parathion. All have one thing in common. As mentioned above, they are built on a basis of carbon atoms, which are also the indispensable building blocks of the living world, and thus classed as "organic." To understand them, we must see of what they are made, and how, although linked with the basic chemistry of all life, they lend themselves to the modifications which make them agents of death.

The basic element, carbon, is one whose atoms have an almost infinite capacity for uniting with each other in chains and rings and various other configurations, and for becoming linked with atoms of other substances. Indeed, the incredible diversity of living creatures from bacteria to the great blue whale is largely due to this capacity of carbon. The complex protein molecule has the carbon atom as its basis, as have molecules of fat, carbohydrates, enzymes, and vitamins. So, too, have enormous numbers of nonliving things, for carbon is not necessarily a symbol of life.

Some organic compounds are simply combinations of carbon and hydrogen. The simplest of these is methane, or marsh gas, formed in nature by the bacterial decomposition of organic matter under water. Mixed with air in proper proportions, methane becomes the dreaded "fire damp" of coal mines. Its structure is beautifully simple, consisting of one carbon atom to which four hydrogen atoms have become attached:


Chemists have discovered that it is possible to detach one or all of the hydrogen atoms and substitute other elements. For example, by substituting one atom of chlorine for one of hydrogen we produce methyl chloride:


Take away three hydrogen atoms and substitute chlorine and we have the anesthetic chloroform:


Substitute chlorine atoms for all of the hydrogen atoms and the result is carbon tetrachloride, the familiar cleaning fluid:


In the simplest possible terms, these changes rung upon the basic molecule of methane illustrate what a chlorinated hydrocarbon is. But this illustration gives little hint of the true complexity of the chemical world of the hydrocarbons, or of the manipulations by which the organic chemist creates his infinitely varied materials. For instead of the simple methane molecule with its single carbon atom, he may work with hydrocarbon molecules consisting of many carbon atoms, arranged in rings or chains, with side chains or branches, holding to themselves with chemical bonds not merely simple atoms of hydrogen or chlorine but also a wide variety of chemical groups. By seemingly slight changes the whole character of the substance is changed; for example, not only what is attached but the place of attachment to the carbon atom is highly important. Such ingenious manipulations have produced a battery of poisons of truly extraordinary power.


DDT (short for dichloro-diphenyl-trichloro-ethane) was first synthesized by a German chemist in 1874, but its properties as an insecticide were not discovered until 1939. Almost immediately DDT was hailed as a means of stamping out insect-borne disease and winning the farmers' war against crop destroyers overnight. The discoverer, Paul Muller of Switzerland, won the Nobel Prize.

DDT is now so universally used that in most minds the product takes on the harmless aspect of the familiar. Perhaps the myth of the harmlessness of DDT rests on the fact that one of its first uses was the wartime dusting of many thousands of soldiers, refugees, and prisoners, to combat lice. It is widely believed that since so many people came into extremely intimate contact with DDT and suffered no immediate ill effects the chemical must certainly be innocent of harm. This understandable misconception arises from the fact that -- unlike other chlorinated hydrocarbons -- DDT in powder form is not readily absorbed through the skin. Dissolved in oil, as it usually is, DDT is definitely toxic. If swallowed, it is absorbed slowly through the digestive tract; it may also be absorbed through the lungs. Once it has entered the body it is stored largely in organs rich in fatty substances (because DDT itself is fat-soluble) such as the adrenals, testes, or thyroid. Relatively large amounts are deposited in the liver, kidneys, and the fat of the large, protective mesenteries that enfold the intestines.

This storage of DDT begins with the smallest conceivable intake of the chemical (which is present as residues on most foodstuffs) and continues until quite high levels are reached. The fatty storage depots act as biological magnifiers, so that an intake of as little as 1/10 of 1 part per million in the diet results in storage of about 10 to 15 parts per million, an increase of one hundredfold or more. These terms of reference, so commonplace to the chemist or the pharmacologist, are unfamiliar to most of us. One part in a million sounds like a very small amount -- and so it is. But such substances are so potent that a minute quantity can bring about vast changes in the body. In animal experiments, 3 parts per million has been found to inhibit an essential enzyme in heart muscle; only 5 parts per million has brought about necrosis or disintegration of liver cells; only 2.5 parts per million of the closely related chemicals dieldrin and chlordane did the same.

This is really not surprising. In the normal chemistry of the human body there is just such a disparity between cause and effect. For example, a quantity of iodine as small as two ten-thousandths of a gram spells the difference between health and disease. Because these small amounts of pesticides are cumulatively stored and only slowly excreted, the threat of chronic poisoning and degenerative changes of the liver and other organs is very real.

Scientists do not agree upon how much DDT can be stored in the human body. Dr. Arnold Lehman, who is the chief pharmacologist of the Food and Drug Administration, says there is neither a floor below which DDT is not absorbed nor a ceiling beyond which absorption and storage ceases. On the other hand, Dr. Wayland Hayes of the United States Public Health Service contends that in every individual a point of equilibrium is reached, and that DDT in excess of this amount is excreted. For practical purposes it is not particularly important which of these men is right. Storage in human beings has been well investigated, and we know that the average person is storing potentially harmful amounts. According to various studies, individuals with no known exposure (except the inevitable dietary one) store an average of 5.3 parts per million to 7.4 parts per million; agricultural workers 17.1 parts per million; and workers in insecticide plants as high as 648 parts per million. So the range of proven storage is quite wide and, what is even more to the point, the minimum figures are above the level at which damage to the liver and other organs or tissues may begin.

One of the most sinister features of DDT and related chemicals is the way they are passed on from one organism to another through all the links of the food chains.
For example, fields of alfalfa are dusted with DDT; meal is later prepared from the alfalfa and fed to hens; the hens lay eggs which contain DDT. Or the hay, containing residues of 7 to 8 parts per million, may be fed to cows. The DDT will turn up in the milk in the amount of about 3 parts per million, but in butter made from this milk the concentration may run to 65 parts per million. Through such a process of transfer, what started out as a very small amount of DDT may end as a heavy concentration. Farmers nowadays find it difficult to obtain uncontaminated fodder for their milk cows, though the Food and Drug Administration forbids the presence of insecticide residues in milk shipped in interstate commerce.

The poison may also be passed on from mother to offspring. Insecticide residues have been recovered from human milk in samples tested by Food and Drug Administration scientists. This means that the breast-fed human infant is receiving small but regular additions to the load of toxic chemicals building up in his body. It is by no means his first exposure, however: there is good reason to believe this begins while he is still in the womb. In experimental animals the chlorinated hydrocarbon insecticides freely cross the barrier of the placenta, the traditional protective shield between the embryo and harmful substances in the mother's body. While the quantities so received by human infants would normally be small, they are not unimportant because children are more susceptible to poisoning than adults. This situation also means that today the average individual almost certainly starts life with the first deposit of the growing load of chemicals his body will be required to carry thenceforth.

All these facts -- storage at even low levels, subsequent accumulation, and occurrence of liver damage at levels that may easily occur in normal diets, caused Food and Drug Administration scientists to declare as early as 1950 that it is "extremely likely the potential hazard of DDT has been underestimated." There has been no such parallel situation in medical history. No one yet knows what the ultimate consequences may be.


Chlordane, another chlorinated hydrocarbon, has all these unpleasant attributes of DDT plus a few that are peculiarly its own. Its residues are long persistent in soil, on foodstuffs, or on surfaces to which it may be applied. Chlordane makes use of all available portals to enter the body. It may be absorbed through the skin, may be breathed in as a spray or dust, and of course is absorbed from the digestive tract if residues are swallowed. Like all other chlorinated hydrocarbons, its deposits build up in the body in cumulative fashion. A diet containing such a small amount of chlordane as 2.5 parts per million may eventually lead to storage of 75 parts per million in the fat of experimental animals.

So experienced a pharmacologist as Dr. Lehman has described chlordane in 1950 as "one of the most toxic of insecticides - anyone handling it could be poisoned." Judging by the carefree liberality with which dusts for lawn treatments by suburbanites are laced with chlordane, this warning has not been taken to heart. The fact that the suburbanite is not instantly stricken has little meaning, for the toxins may sleep long in his body, to become manifest months or years later in an obscure disorder almost impossible to trace to its origins. On the other hand, death may strike quickly. One victim who accidentally spilled a 25 per cent industrial solution on the skin developed symptoms of poisoning within 40 minutes and died before medical help could be obtained. No reliance can be placed on receiving advance warning which might allow treatment to be had in time.

Heptachlor, one of the constituents of chlordane, is marketed as a separate formulation. It has a particularly high capacity for storage in fat. If the diet contains as little as 1/10 of 1 part per million there will be measurable amounts of heptachlor in the body. It also has the curious ability to undergo change into a chemically distinct substance known as heptachlor epoxide. It does this in soil and in the tissues of both plants and animals. Tests on birds indicate that the epoxide that results from this change is more toxic than the original chemical, which in turn is four times as toxic as chlordane.

As long ago as the mid-1930's a special group of hydrocarbons, the chlorinated naphthalenes, was found to cause hepatitis, and also a rare and almost invariably fatal liver disease in persons subjected to occupational exposure. They have led to illness and death of workers in electrical industries; and more recently, in agriculture, they have been considered a cause of a mysterious and usually fatal disease of cattle. In view of these antecedents, it is not surprising that three of the insecticides that are related to this group are among the most violently poisonous of all the hydrocarbons. These are dieldrin, aldrin, and endrin.

Dieldrin, named for a German chemist, Diels, is about 5 times as toxic as DDT when swallowed but 40 times as toxic when absorbed through the skin in solution
. It is notorious for striking quickly and with terrible effect at the nervous system, sending the victims into convulsions. Persons thus poisoned recover so slowly as to indicate chronic effects. As with other chlorinated hydrocarbons, these long-term effects include severe damage to the liver. The long duration of its residues and the effective insecticidal action make dieldrin one of the most used insecticides today, despite the appalling destruction of wildlife that has followed its use. As tested on quail and pheasants, it has proved to be about 40 to 50 times as toxic as DDT.

There are vast gaps in our knowledge of how dieldrin is stored or distributed in the body, or excreted, for the chemists' ingenuity in devising insecticides has long ago outrun biological knowledge of the way these poisons affect the living organism. However, there is every indication of long storage in the human body, where deposits may lie dormant like a slumbering volcano, only to flare up in periods of physiological stress when the body draws upon its fat reserves. Much of what we do know has been learned through hard experience in the antimalarial campaigns carried out by the World Health Organization. As soon as dieldrin was substituted for DDT in malaria-conctol work (because the malaria mosquitoes had become resistant to DDT), cases of poisoning among the spraymen began to occur. The seizures were severe -- from half to all (varying in the different programs) of the men affected went into convulsions and several died. Some had convulsions as long as four months after the last exposure.

Aldrin is a somewhat mysterious substance, for although it exists as a separate entity it bears the relation of alter ego to dieldrin. When carrots are taken from a bed treated with aldrin they are found to contain residues of dieldrin. This change occurs in living tissues and also in soil. Such alchemistic transformations have led to many erroneous reports, for if a chemist, knowing aldrin has been applied, tests for it he will be deceived into thinking all residues have been dissipated. The residues are there, but they are dieldrin and this requires a different test.

Like dieldrin, aldrin is extremely toxic. It produces degenerative changes in the liver and kidneys. A quantity the size of an aspirin tablet is enough to kill more than 400 quail. Many cases of human poisonings are on record, most of them in connection with industrial handling.

Aldrin, like most of this group of insecticides, projects a menacing shadow into the future, the shadow of sterility. Pheasants fed quantities too small to kill them nevertheless laid few eggs, and the chicks that hatched soon died. The effect is not confined to birds. Rats exposed to aldrin had fewer pregnancies and their young were sickly and short-lived. Puppies born of treated mothers died within three days. By one means or another, the new generations suffer for the poisoning of their parents. No one knows whether the same effect will be seen in human beings, yet this chemical has been sprayed from airplanes over suburban areas and farmlands.

Endrin is the most toxic of all the chlorinated hydrocarbons. Although chemically rather closely related to dieldrin, a little twist in its molecular structure makes it 5 times as poisonous. It makes the progenitor of all this group of insecticides, DDT, seem by comparison almost harmless. It is 15 times as poisonous as DDT to mammals, 30 times as poisonous to fish, and about 300 times as poisonous to some birds.

In the decade of its use, endrin has killed enormous numbers of fish, has fatally poisoned cattle that have wandered into sprayed orchards, has poisoned wells, and has drawn a sharp warning from at least one state health department that its careless use is endangering human lives.

In one of the most tragic cases of endrin poisoning there was no apparent carelessness; efforts had been made to take precautions apparently considered adequate. A year-old child had been taken by his American parents to live in Venezuela. There were cockroaches in the house to which they moved, and after a few days a spray containing endrin was used. The baby and the small family dog were taken out of the house before the spraying was done about nine o'clock one morning. After the spraying the floors were washed. The baby and dog were returned to the house in mid-afternoon. An hour or so later the dog vomited, went into convulsions, and died. At 10 P.M. on the evening of the same day the baby also vomited, went into convulsions, and lost consciousness. After that fateful contact with endrin, this normal, healthy child became little more than a vegetable -- unable to see or hear, subject to frequent muscular spasms, apparently completely cut off from contact with his surroundings. Several months of treatment in a New York hospital failed to change his condition or bring hope of change. "It is extremely doubtful," reported the attending physicians, "that any useful degree of recovery will occur."


The second major group of insecticides, the alkyl or organic phosphates, are among the most poisonous chemicals in the world. The chief and most obvious hazard attending their use is that of acute poisoning of people applying the sprays or accidentally coming in contact with drifting spray, with vegetation coated by it, or with a discarded container. In Florida, two children found an empty bag and used it to repair a swing. Shortly thereafter both of them died and three of their playmates became ill. The bag had once contained an insecticide called parathion, one of the organic phosphates; tests established death by parathion poisoning. On another occasion two small boys in Wisconsin, cousins, died on the same night. One had been playing in his yard when spray drifted in from an adjoining field where his father was spraying potatoes with parathion; the other had run playfully into the barn after his father and had put his hand on the nozzle of the spray equipment.

The origin of these insecticides has a certain ironic significance. Although some of the chemicals themselves -- organic esters of phosphoric acid -- had been known for many years, their insecticidal properties remained to be discovered by a German chemist, Gerhard Schrader, in the late 1930's. Almost immediately the German government recognized the value of these same chemicals as new and devastating weapons in man's war against his own kind, and the work on them was declared secret. Some became the deadly nerve gases. Others, of closely allied structure, became insecticides.

The organic phosphorus insecticides act on the living organism in a peculiar way. They have the ability to destroy enzymes -- enzymes that perform necessary functions in the body. Their target is the nervous system, whether the victim is an insect or a warm-blooded animal. Under normal conditions, an impulse passes from nerve to nerve with the aid of a "chemical transmitter" called acetylcholine, a substance that performs an essential function and then disappears. Indeed, its existence is so ephemeral that medical researchers are unable, without special procedures, to sample it before the body has destroyed it. This transient nature of the transmitting chemical is necessary to the normal functioning of the body. If the acetylcholine is not destroyed as soon as a nerve impulse has passed, impulses continue to flash across the bridge from nerve to nerve, as the chemical exerts its effects in an ever more intensified manner. The movements of the whole body become uncoordinated: tremors, muscular spasms, convulsions, and death quickly result.

This contingency has been provided for by the body. A protective enzyme called cholinesterase is at hand to destroy the transmitting chemical once it is no longer needed. By this means a precise balance is struck and the body never builds up a dangerous amount of acetylcholine. But on contact with the organic phosphorus insecticides, the protective enzyme is destroyed, and as the quantity of the enzyme is reduced that of the transmitting chemical builds up. In this effect, the organic phosphorus compounds resemble the alkaloid poison muscarine, found in a poisonous mushroom, the fly amanita.

Repeated exposures may lower the cholinesterase level until an individual reaches the brink of acute poisoning, a brink over which he may be pushed by a very small additional exposure. For this reason it is considered important to make periodic examinations of the blood of spray operators and others regularly exposed.

Parathion is one of the most widely used of the organic phosphates. It is also one of the most powerful and dangerous. Honeybees become "wildly agitated and bellicose" on contact with it, perform frantic cleaning movements, and are near death within half an hour. A chemist, thinking to learn by the most direct possible means the dose acutely toxic to human beings, swallowed a minute amount, equivalent to about .00424 ounce. Paralysis followed so instantaneously that he could not reach the antidotes he had prepared at hand, and so he died. Parathion is now said to be a favorite instrument of suicide in Finland. In recent years the State of California has reported an average of more than 200 cases of accidental parathion poisoning annually. In many parts of the world the fatality rate from parathion is startling: 100 fatal cases in India and 67 in Syria in 1958, and an average of 336 deaths per year in Japan.

Yet some 7,000,000 pounds of parathion are now applied to fields and orchards of the United States -- by hand sprayers, motorized blowers and dusters, and by airplane. The amount used on California farms alone could, according to one medical authority, "provide a lethal dose for 5 to 10 times the whole world's population."

One of the few circumstances that save us from extinction by this means is the fact that parathion and other chemicals of this group are decomposed rather rapidly. Their residues on the crops to which they are applied are therefore relatively short-lived compared with the chlorinated hydrocarbons. However, they last long enough to create hazards and produce consequences that range from the merely serious to the fatal. In Riverside, California, eleven out of thirty men picking oranges became violently ill and all but one had to be hospitalized. Their symptoms were typical of parathion poisoning. The grove had been sprayed with parathion some two and a half weeks earlier; the residues that reduced them to retching, half-blind, semiconscious misery were sixteen to nineteen days old. And this is not by any means a record for persistence. Similar mishaps have occurred in groves sprayed a month earlier, and residues have been found in the peel of oranges six months after treatment with standard dosages.

The danger to all workers applying the organic phosphorus insecticides in fields, orchards, and vineyards, is so extreme that some states using these chemicals have established laboratories where physicians may obtain aid in diagnosis and treatment. Even the physicians themselves may be in some danger, unless they wear rubber gloves in handling the victims of poisoning. So may a laundress washing the clothing of such victims, which may have absorbed enough parathion to affect her.

Malathion, another of the organic phosphates, is almost as familiar to the public as DDT, being widely used by gardeners, in household insecticides, in mosquito spraying, and in such blanket attacks on insects as the spraying of nearly a million acres of Florida communities for the Mediterranean fruit fly. It is considered the least toxic of this group of chemicals and many people assume they may use it freely and without fear of harm. Commercial advertising encourages this comfortable attitude.

The alleged "safety" of malathion rests on rather precarious ground, although -- as often happens -- this was not discovered until the chemical had been in use for several years. Malathion is "safe" only because the mammalian liver, an organ with extraordinary protective powers, renders it relatively harmless. The detoxification is accomplished by one of the enzymes of the liver. If, however, something destroys this enzyme or interferes with its action, the person exposed to malathion receives the full force of the poison.

Unfortunately for all of us, opportunities for this sort of thing to happen are legion. A few years ago a team of Food and Drug Administration scientists discovered that when malathion and certain other organic phosphates are administered simultaneously a massive poisoning results -- up to 50 times as severe as would be predicted on the basis of adding together the toxicities of the two. In other words, 1/100 of the lethal dose of each compound may be fatal when the two are combined.

This discovery led to the testing of other combinations. It is now known that many pairs of organic phosphate insecticides are highly dangerous, the toxicity being stepped up or "potentiated" through the combined action. Potentiation seems to take place when one compound destroys the liver enzyme responsible for detoxifying the other. The two need not be given simultaneously. The hazard exists not only for the man who may spray this week with one insecticide and next week with another; it exists also for the consumer of sprayed products. The common salad bowl may easily present a combination of organic phosphate insecticides. Residues well within the legally permissible limits may interact.

The full scope of the dangerous interaction of chemicals is as yet little known, but disturbing findings now come regularly from scientific laboratories. Among these is the discovery that the toxicity of an organic phosphate can be increased by a second agent that is not necessarily an insecticide. For example, one of the plasticizing agents may act even more strongly than another insecticide to make malathion more dangerous. Again, this is because it inhibits the liver enzyme that normally would "draw the teeth" of the poisonous insecticide.

What of other chemicals in the normal human environment? What, in particular, of drugs? A bare beginning has been made on this subject, but already it is known that some organic phosphates (parathion and malathion) increase the toxicity of some drugs used as muscle relaxants, and that several others (again including malathion) markedly increase the sleeping time of barbiturates.


In Greek mythology the sorceress Medea, enraged at being supplanted by a rival for the affections of her husband Jason, presented the new bride with a robe possessing magic properties. The wearer of the robe immediately suffered a violent death. This death-by-indirection now finds its counterpart in what are known as "systemic insecticides." These are chemicals with extraordinary properties which are used to convert plants or animals into a sort of Medea's robe by making them actually poisonous. This is done with the purpose of killing insects that may come in contact with them, especially by sucking their juices or blood.

The world of systemic insecticides is a weird world, surpassing the imaginings of the brothers Grimm -- perhaps most closely akin to the cartoon world of Charles Addams. It is a world where the enchanted forest of the fairy tales has become the poisonous forest in which an insect that chews a leaf or sucks the sap of a plant is doomed. It is a world where a flea bites a dog, and dies because the dog's blood has been made poisonous, where an insect may die from vapors emanating from a plant it has never touched, where a bee may carry poisonous nectar back to its hive and presently produce poisonous honey.

The entomologists' dream of the built-in insecticide was born when workers in the field of applied entomology realized they could take a hint from nature: they found that wheat growing in soil containing sodium selenate was immune to attack by aphids or spider mites. Selenium, a naturally occurring element found sparingly in rocks and soils of many parts of the world, thus became the first systemic insecticide.

What makes an insecticide a systemic is the ability to permeate all the tissues of a plant or animal and make them toxic. This quality is possessed by some chemicals of the chlorinated hydrocarbon group and by others of the organophosphorus group, all synthetically produced, as well as by certain naturally occurring substances. In practice, however, most systemics are drawn from the organophosphorus group because the problem of residues is somewhat less acute.

Systemics act in other devious ways. Applied to seeds, either by soaking or in a coating combined with carbon, they extend their effects into the following plant generation and produce seedlings poisonous to aphids and other sucking insects. Vegetables such as peas, beans, and sugar beets are sometimes thus protected. Cotton seeds coated with a systemic insecticide have been in use for some time in California, where 25 farm laborers planting cotton in the San Joaquin Valley in 1959 were seized with sudden illness, caused by handling the bags of treated seeds.

In England someone wondered what happened when bees made use of nectar from plants treated with systemics. This was investigated in areas treated with a chemical called schradan. Although the plants had been sprayed before the flowers were formed, the nectar later produced contained the poison. The result, as might have been predicted, was that the honey made by the bees also was contaminated with schradan.

Use of animal systemics has concentrated chiefly on control of the cattle grub, a damaging parasite of livestock. Extreme care must be used in order to create an insecticidal effect in the blood and tissues of the host without setting up a fatal poisoning. The balance is delicate and government veterinarians have found that repeated small doses can gradually deplete an animal's supply of the protective enzyme cholinesterase, so that without warning a minute additional dose will cause poisoning.

There are strong indications that fields closer to our daily lives are being opened up. You may now give your dog a pill which, it is claimed, will rid him of fleas by making his blood poisonous to them. The hazards discovered in treating cattle would presumably apply to the dog. As yet no one seems to have proposed a human systemic that would make us lethal to a mosquito. Perhaps this is the next step.


So far in this chapter we have been discussing the deadly chemicals that are being used in our war against the insects. What of our simultaneous war against the weeds?

The desire for a quick and easy method of killing unwanted plants has given rise to a large and growing array of chemicals that are known as herbicides, or, less formally, as weed killers. The story of how these chemicals are used and misused will be told in Chapter 6; the question that here concerns us is whether the weed killers are poisons and whether their use is contributing to the poisoning of the environment.

The legend that the herbicides are toxic only to plants and so pose no threat to animal life has been widely disseminated, but unfortunately it is not true. The plant killers include a large variety of chemicals that act on animal tissue as well as on vegetation. They vary greatly in their action on the organism. Some are general poisons, some are powerful stimulants of metabolism, causing a fatal rise in body temperature, some induce malignant tumors either alone or in partnership with other chemicals, some strike at the genetic material of the race by causing gene mutations. The herbicides, then, like the insecticides, include some very dangerous chemicals, and their careless use in the belief that they are "safe" can have disastrous results.

Despite the competition of a constant stream of new chemicals issuing from the laboratories, arsenic compounds are still liberally used, both as insecticides (as mentioned above) and as weed killers, where they usually take the chemical form of sodium arsenite. The history of their use is not reassuring. As roadside sprays, they have cost many a farmer his cow and killed uncounted numbers of wild creatures. As aquatic weed killers in lakes and reservoirs they have made public waters unsuitable for drinking or even for swimming. As a spray applied to potato fields to destroy the vines they have taken a toll of human and nonhuman life.

In England this latter practice developed about 1951 as a result of a shortage of sulfuric acid, formerly used to burn off the potato vines. The Ministry of Agriculture considered it necessary to give warning of the hazard of going into the arsenic-sprayed fields, but the warning was not understood by the cattle (nor, we must assume, by the wild animals and birds) and reports of cattle poisoned by the arsenic sprays came with monotonous regularity. When death came also to a farmer's wife through arsenic-contaminated water, one of the major English chemical companies (in 1959) stopped production of arsenical sprays and called in supplies already in the hands of dealers, and shortly thereafter the Ministry of Agriculture announced that because of high risks to people and cattle restrictions on the use of arsenites would be imposed. In 1961, the Australian government announced a similar ban. No such restrictions impede the use of these poisons in the United States, however.

Some of the "dinitro" compounds are also used as herbicides. They are rated as among the most dangerous materials of this type in use in the United States. Dinitrophenol is a strong metabolic stimulant. For this reason it was at one time used as a reducing drug, but the margin between the slimming dose and that required to poison or kill was slight -- so slight that several patients died and many suffered permanent injury before use of the drug was finally halted.

A related chemical, pentachlorophenol, sometimes known as "penta," is used as a weed killer as well as an insecticide, often being sprayed along railroad tracks and in waste areas. Penta is extremely toxic to a wide variety of organisms from bacteria to man. Like the dinitros, it interferes, often fatally, with the body's source of energy, so that the affected organism almost literally burns itself up. Its fearful power is illustrated in a fatal accident recently reported by the California Department of Health. A tank truck driver was preparing a cotton defoliant by mixing diesel oil with pentachlorophenol. As he was drawing the concentrated chemical out of a drum, the spigot accidentally toppled back. He reached in with his bare hand to regain the spigot. Although he washed immediately, he became acutely ill and died the next day.

While the results of weed killers such as sodium arsenite or the phenols are grossly obvious, some other herbicides are more insidious in their effects. For example, the now famous cranberry-weed-killer aminotriazole, or amitrol, is rated as having relatively low toxicity. But in the long run its tendency to cause malignant tumors of the thyroid may be far more significant for wildlife and perhaps also for man.

Among the herbicides are some that are classified as "mutagens," or agents capable of modifying the genes, the materials of heredity. We are rightly appalled by the genetic effects of radiation; how then, can we be indifferent to the same effect in chemicals that we disseminate widely in our environment?
Site Admin
Posts: 35790
Joined: Thu Aug 01, 2013 5:21 am

Re: Silent Spring, by Rachel Carson

Postby admin » Tue Aug 04, 2015 12:06 am

5. Surface Waters and Underground Seas


OF ALL our natural resources water has become the most precious. By far the greater part of the earth's surface is covered by its enveloping seas, yet in the midst of this plenty we are in want. By a strange paradox, most of the earth's abundant water is not usable for agriculture, industry, or human consumption because of its heavy load of sea salts, and so most of the world's population is either experiencing or is threatened with critical shortages. In an age when man has forgotten his origins and is blind even to his most essential needs for survival, water along with other resources has become the victim of his indifference.

The problem of water pollution by pesticides can be understood only in context, as part of the whole to which it belongs -- the pollution of the total environment of mankind. The pollution entering our waterways comes from many sources: radioactive wastes from reactors, laboratories, and hospitals; fallout from nuclear explosions; domestic wastes from cities and towns; chemical wastes from factories. To these is added a new kind of fallout -- the chemical sprays applied to croplands and gardens, forests and fields. Many of the chemical agents in this alarming melange imitate and augment the harmful effects of radiation, and within the groups of chemicals themselves there are sinister and little- understood interactions, transformations, and summations of effect.

Ever since chemists began to manufacture substances that nature never invented, the problems of water purification have become complex and the danger to users of water has increased. As we have seen, the production of these synthetic chemicals in large volume began in the 1940's. It has now reached such proportions that an appalling deluge of chemical pollution is daily poured into the nation's waterways. When inextricably mixed with domestic and other wastes discharged into the same water, these chemicals sometimes defy detection by the methods in ordinary use by purification plants. Most of them are so stable that they cannot be broken down by ordinary processes. Often they cannot even be identified. In rivers, a really incredible variety of pollutants combine to produce deposits that the sanitary engineers can only despairingly refer to as "gunk." Professor Rolf Eliassen of the Massachusetts Institute of Technology testified before a congressional committee to the impossibility of predicting the composite effect of these chemicals, or of identifying the organic matter resulting from the mixture. "We don't begin to know what that is," said Professor Eliassen. "What is the effect on the people? We don't know."

To an ever-increasing degree, chemicals used for the control of insects, rodents, or unwanted vegetation contribute to these organic pollutants. Some are deliberately applied to bodies of water to destroy plants, insect larvae, or undesired fishes. Some come from forest spraying that may blanket two or three million acres of a single state with spray directed against a single insect pest -- spray that falls directly into streams or that drips down through the leafy canopy to the forest floor, there to become part of the slow movement of seeping moisture beginning its long journey to the sea. Probably the bulk of such contaminants are the waterborne residues of the millions of pounds of agricultural chemicals that have been applied to farmlands for insect or rodent control and have been leached out of the ground by rains to become part of the universal seaward movement of water.

Here and there we have dramatic evidence of the presence of these chemicals in our streams and even in public water supplies. For example, a sample of drinking water from an orchard area in Pennsylvania, when tested on fish in a laboratory, contained enough insecticide to kill all of the test fish in only four hours. Water from a stream draining sprayed cotton fields remained lethal to fishes even after it had passed through a purifying plant, and in fifteen streams tributary to the Tennessee River in Alabama the runoff from fields treated with toxaphene, a chlorinated hydrocarbon, killed all the fish inhabiting the streams. Two of these streams were sources of municipal water supply. Yet for a week after the application of the insecticide the water remained poisonous, a fact attested by the daily deaths of goldfish suspended in cages downstream.

For the most part this pollution is unseen and invisible, making its presence known when hundreds or thousands of fish die, but more often never detected at all. The chemist who guards water purity has no routine tests for these organic pollutants and no way to remove them. But whether detected or not, the pesticides are there, and as might be expected with any materials applied to land surfaces on so vast a scale, they have now found their way into many and perhaps all of the major river systems of the country.

If anyone doubts that our waters have become almost universally contaminated with insecticides he should study a small report issued by the United States Fish and Wildlife Service in 1960. The Service had carried out studies to discover whether fish, like warm-blooded animals, store insecticides in their tissues. The first samples were taken from forest areas in the West where there had been mass spraying of DDT for the control of the spruce budworm. As might have been expected, all of these fish contained DDT. The really significant findings were made when the investigators turned for comparison to a creek in a remote area about 30 miles from the nearest spraying for budworm control. This creek was upstream from the first and separated from it by a high waterfall. No local spraying was known to have occurred. Yet these fish, too, contained DDT. Had the chemical reached this remote creek by hidden underground streams? Or had it been airborne, drifting down as fallout on the surface of the creek? In still another comparative study, DDT was found in the tissues of fish from a hatchery where the water supply originated in a deep well. Again there was no record of local spraying. The only possible means of contamination seemed to be by means of groundwater.

In the entire water-pollution problem, there is probably nothing more disturbing than the threat of widespread contamination of groundwater. It is not possible to add pesticides to water anywhere without threatening the purity of water everywhere. Seldom if ever does Nature operate in closed and separate compartments, and she has not done so in distributing the earth's water supply. Rain, falling on the land, settles down through pores and cracks in soil and rock, penetrating deeper and deeper until eventually it reaches a zone where all the pores of the rock are filled with water, a dark, subsurface sea, rising under hills, sinking beneath valleys. This groundwater is always on the move, sometimes at a pace so slow that it travels no more than 50 feet a year, sometimes rapidly, by comparison, so that it moves nearly a tenth of a mile in a day. It travels by unseen waterways until here and there it comes to the surface as a spring, or perhaps it is tapped to feed a well. But mostly it contributes to streams and so to rivers. Except for what enters streams directly as rain or surface runoff, all the running water of the earth's surface was at one time groundwater. And so, in a very real and frightening sense, pollution of the groundwater is pollution of water everywhere.


It must have been by such a dark, underground sea that poisonous chemicals traveled from a manufacturing plant in Colorado to a farming district several miles away, there to poison wells, sicken humans and livestock, and damage crops -- an extraordinary episode that may easily be only the first of many like it. Its history, in brief, is this. In 1943, the Rocky Mountain Arsenal of the Army Chemical Corps, located near Denver, began to manufacture war materials. Eight years later the facilities of the arsenal were leased to a private oil company for the production of insecticides. Even before the change of operations, however, mysterious reports had begun to come in. Farmers several miles from the plant began to report unexplained sickness among livestock; they complained of extensive crop damage. Foliage turned yellow, plants failed to mature, and many crops were killed outright. There were reports of human illness, thought by some to be related.

The irrigation waters on these farms were derived from shallow wells. When the well waters were examined (in a study in 1959, in which several state and federal agencies participated) they were found to contain an assortment of chemicals. Chlorides, chlorates, salts of phosphonic acid, fluorides, and arsenic had been discharged from the Rocky Mountain Arsenal into holding ponds during the years of its operation. Apparently the groundwater between the arsenal and the farms had become contaminated and it had taken 7 to 8 years for the wastes to travel underground a distance of about 3 miles from the holding ponds to the nearest farm. This seepage had continued to spread and had further contaminated an area of unknown extent. The investigators knew of no way to contain the contamination or halt its advance.

All this was bad enough, but the most mysterious and probably in the long run the most significant feature of the whole episode was the discovery of the weed killer 2,4-D in some of the wells and in the holding ponds of the arsenal. Certainly its presence was enough to account for the damage to crops irrigated with this water. But the mystery lay in the fact that no 2,4-D had been manufactured at the arsenal at any stage of its operations.

After long and careful study, the chemists at the plant concluded that the 2,4-D had been formed spontaneously in the open basins. It had been formed there from other substances discharged from the arsenal; in the presence of air, water, and sunlight, and quite without the intervention of human chemists, the holding ponds had become chemical laboratories for the production of a new chemical -- a chemical fatally damaging to much of the plant life it touched.

And so the story of the Colorado farms and their damaged crops assumes a significance that transcends its local importance. What other parallels may there be, not only in Colorado but wherever chemical pollution finds its way into public waters? In lakes and streams everywhere, in the presence of catalyzing air and sunlight, what dangerous substances may be born of parent chemicals labeled "harmless"?

Indeed one of the most alarming aspects of the chemical pollution of water is the fact that here -- in river or lake or reservoir, or for that matter in the glass of water served at your dinner table -- are mingled chemicals that no responsible chemist would think of combining in his laboratory. The possible interactions between these freely mixed chemicals are deeply disturbing to officials of the United States Public Health Service, who have expressed the fear that the production of harmful substances from comparatively innocuous chemicals may be taking place on quite a wide scale. The reactions may be between two or more chemicals, or between chemicals and the radioactive wastes that are being discharged into our rivers in ever-increasing volume. Under the impact of ionizing radiation some rearrangement of atoms could easily occur, changing the nature of the chemicals in a way that is not only unpredictable but beyond control.

It is, of course, not only the groundwaters that are becoming contaminated, but surface-moving waters as well -- streams, rivers, irrigation waters. A disturbing example of the latter seems to be building up on the national wildlife refuges at Tule Lake and Lower Klamath, both in California. These refuges are part of a chain including also the refuge on Upper Klamath Lake just over the border in Oregon. All are linked, perhaps fatefully, by a shared water supply, and all are affected by the fact that they lie like small islands in a great sea of surrounding farmlands -- land reclaimed by drainage and stream diversion from an original waterfowl paradise of marshland and open water.

These farmlands around the refuges are now irrigated by water from Upper Klamath Lake. The irrigation waters, recollected from the fields they have served, are then pumped into Tule Lake and from there to Lower Klamath. All of the waters of the wildlife refuges established on these two bodies of water therefore represent the drainage of agricultural lands. It is important to remember this in connection with recent happenings.

In the summer of 1960 the refuge staff picked up hundreds of dead and dying birds at Tule Lake and Lower Klamath. Most of them were fish-eating species -- herons, pelicans, grebes, gulls. Upon analysis, they were found to contain insecticide residues identified as toxaphene, DDD, and DDE. Fish from the lakes were also found to contain insecticides; so did samples of plankton. The refuge manager believes that pesticide residues are now building up in the waters of these refuges, being conveyed there by return irrigation flow from heavily sprayed agricultural lands.

Such poisoning of waters set aside for conservation purposes could have consequences felt by every western duck hunter and by everyone to whom the sight and sound of drifting ribbons of waterfowl across an evening sky are precious. These particular refuges occupy critical positions in the conservation of western waterfowl. They lie at a point corresponding to the narrow neck of a funnel, into which all the migratory paths composing what is known as the Pacific Flyway converge. During the fall migration they receive many millions of ducks and geese from nesting grounds extending from the shores of Bering Sea east to Hudson Bay -- fully three fourths of all the waterfowl that move south into the Pacific Coast states in autumn. In summer they provide nesting areas for waterfowl, especially for two endangered species, the redhead and the ruddy duck. If the lakes and pools of these refuges become seriously contaminated, the damage to the waterfowl populations of the Far West could be irreparable.

Water must also be thought of in terms of the chains of life it supports -- from the small-as-dust green cells of the drifting plant plankton, through the minute water fleas to the fishes that strain plankton from the water and are in turn eaten by other fishes or by birds, mink, raccoons -- in an endless cyclic transfer of materials from life to life. We know that the necessary minerals in the water are so passed from link to link of the food chains. Can we suppose that poisons we introduce into water will not also enter into these cycles of nature?

The answer is to be found in the amazing history of Clear Lake, California. Clear Lake lies in mountainous country some 90 miles north of San Francisco and has long been popular with anglers. The name is inappropriate, for actually it is a rather turbid lake because of the soft black ooze that covers its shallow bottom. Unfortunately for the fishermen and the resort dwellers on its shores, its waters have provided an ideal habitat for a small gnat, Chaoborus astictopus. Although closely related to mosquitoes, the gnat is not a bloodsucker and probably does not feed at all as an adult. However, human beings who shared its habitat found it annoying because of its sheer numbers. Efforts were made to control it but they were largely fruitless until, in the late 1940's, the chlorinated hydrocarbon insecticides offered new weapons. The chemical chosen for a fresh attack was DDD, a close relative of DDT but apparently offering fewer threats to fish life.

The new control measures undertaken in 1949 were carefully planned and few people would have supposed any harm could result. The lake was surveyed, its volume determined, and the insecticide applied in such great dilution that for every part of chemical there would be 70 million parts of water. Control of the gnats was at first good, but by 1954 the treatment had to be repeated, this time at the rate of 1 part of insecticide in 50 million parts of water. The destruction of the gnats was thought to be virtually complete.

The following winter months brought the first intimation that other life was affected: the western grebes on the lake began to die, and soon more than a hundred of them were reported dead. At Clear Lake the western grebe is a breeding bird and also a winter visitant, attracted by the abundant fish of the lake. It is a bird of spectacular appearance and beguiling habits, building its floating nests in shallow lakes of western United States and Canada. It is called the "swan grebe" with reason, for it glides with scarcely a ripple across the lake surface, the body riding low, white neck and shining black head held high. The newly hatched chick is clothed in soft gray down; in only a few hours it takes to the water and rides on the back of the father or mother, nestled under the parental wing coverts.

Following a third assault on the ever-resilient gnat population, in 1957, more grebes died. As had been true in 1954, no evidence of infectious disease could be discovered on examination of the dead birds. But when someone thought to analyze the fatty tissues of the grebes, they were found to be loaded with DDD in the extraordinary concentration of 1600 parts per million.

The maximum concentration applied to the water was 1/50 part per million. How could the chemical have built up to such prodigious levels in the grebes? These birds, of course, are fish eaters. When the fish of Clear Lake also were analyzed the picture began to take form -- the poison being picked up by the smallest organisms, concentrated and passed on to the larger predators. Plankton organisms were found to contain about 5 parts per million of the insecticide (about 25 times the maximum concentration ever reached in the water itself); plant-eating fishes had built up accumulations ranging from 40 to 300 parts per million; carnivorous species had stored the most of all. One, a brown bullhead, had the astounding concentration of 2500 parts per million. It was a house-that-Jack-built sequence, in which the large carnivores had eaten the smaller carnivores, that had eaten the herbivores, that had eaten the plankton, that had absorbed the poison from the water.

Even more extraordinary discoveries were made later. No trace of DDD could be found in the water shortly after the last application of the chemical. But the poison had not really left the lake; it had merely gone into the fabric of the life the lake supports. Twenty-three months after the chemical treatment had ceased, the plankton still contained as much as 5.3 parts per million. In that interval of nearly two years, successive crops of plankton had flowered and faded away, but the poison, although no longer present in the water, had somehow passed from generation to generation. And it lived on in the animal life of the lake as well. All fish, birds, and frogs examined a year after the chemical applications had ceased still contained DDD. The amount found in the flesh always exceeded by many times the original concentration in the water. Among these living carriers were fish that had hatched nine months after the last DDD application, grebes, and California gulls that had built up concentrations of more than 2000 parts per million. Meanwhile, the nesting colonies of the grebes dwindled -- from more than 1000 pairs before the first insecticide treatment to about 30 pairs in 1960. And even the thirty seem to have nested in vain, for no young grebes have been observed on the lake since the last DDD application.

This whole chain of poisoning, then, seems to rest on a base of minute plants which must have been the original concentrators. But what of the opposite end of the food chain -- the human being who, in probable ignorance of all this sequence of events, has rigged his fishing tackle, caught a string of fish from the waters of Clear Lake, and taken them home to fry for his supper? What could a heavy dose of DDD, or perhaps repeated doses, do to him?

Although the California Department of Public Health professed to see no hazard, nevertheless in 1959 it required that the use of DDD in the lake be stopped. In view of the scientific evidence of the vast biological potency of this chemical, the action seems a minimum safety measure. The physiological effect of DDD is probably unique among insecticides, for it destroys part of the adrenal gland -- the cells of the outer layer known as the adrenal cortex, which secretes the hormone cortin. This destructive effect, known since 1948, was at first believed to be confined to dogs, because it was not revealed in such experimental animals as monkeys, rats, or rabbits. It seemed suggestive, however, that DDD produced in dogs a condition very similar to that occurring in man in the presence of Addison's disease. Recent medical research has revealed that DDD does strongly suppress the function of the human adrenal cortex. Its cell-destroying capacity is now clinically utilized in the treatment of a rare type of cancer which develops in the adrenal gland.


The Clear Lake situation brings up a question that the public needs to face: Is it wise or desirable to use substances with such strong effect on physiological processes for the control of insects, especially when the control measures involve introducing the chemical directly into a body of water? The fact that the insecticide was applied in very low concentrations is meaningless, as its explosive progress through the natural food chain in the lake demonstrates. Yet Clear Lake is typical of a large and growing number of situations where solution of an obvious and often trivial problem creates a far more serious but conveniently less tangible one. Here the problem was resolved in favor of those annoyed by gnats, and at the expense of an unstated, and probably not even clearly understood, risk to all who took food or water from the lake.

It is an extraordinary fact that the deliberate introduction of poisons into a reservoir is becoming a fairly common practice. The purpose is usually to promote recreational uses, even though the water must then be treated at some expense to make it fit for its intended use as drinking water. When sportsmen of an area want to "improve" fishing in a reservoir, they prevail on authorities to dump quantities of poison into it to kill the undesired fish, which are then replaced with hatchery fish more suited to the sportsmen's taste. The procedure has a strange, Alice-in-Wonderland quality. The reservoir was created as a public water supply, yet the community, probably unconsulted about the sportsmen's project, is forced either to drink water containing poisonous residues or to pay out tax money for treatment of the water to remove the poisons -- treatments that are by no means foolproof.

As ground and surface waters are contaminated with pesticides and other chemicals, there is danger that not only poisonous but also cancer-producing substances are being introduced into public water supplies. Dr. W. C. Hueper of the National Cancer Institute has warned that "the danger of cancer hazards from the consumption of contaminated drinking water will grow considerably within the foreseeable future." And indeed a study made in Holland in the early 1950's provides support for the view that polluted waterways may carry a cancer hazard. Cities receiving their drinking water from rivers had a higher death rate from cancer than did those whose water came from sources presumably less susceptible to pollution such as wells. Arsenic, the environmental substance most clearly established as causing cancer in man, is involved in two historic cases in which polluted water supplies caused widespread occurrence of cancer. In one case the arsenic came from the slag heaps of mining operations, in the other from rock with a high natural content of arsenic. These conditions may easily be duplicated as a result of heavy applications of arsenical insecticides. The soil in such areas becomes poisoned. Rains then carry part of the arsenic into streams, rivers, and reservoirs, as well as into the vast subterranean seas of groundwater.

Here again we are reminded that in nature nothing exists alone. To understand more clearly how the pollution of our world is happening, we must now look at another of the earth's basic resources, the soil.
Site Admin
Posts: 35790
Joined: Thu Aug 01, 2013 5:21 am

Re: Silent Spring, by Rachel Carson

Postby admin » Tue Aug 04, 2015 12:13 am

5. Realms of the Soil


THE THIN LAYER of soil that forms a patchy covering over the continents controls our own existence and that of every other animal of the land. Without soil, land plants as we know them could not grow, and without plants no animals could survive.

Yet if our agriculture-based life depends on the soil, it is equally true that soil depends on life, its very origins and the maintenance of its true nature being intimately related to living plants and animals. For soil is in part a creation of life, born of a marvelous interaction of life and nonlife long eons ago. The parent materials were gathered together as volcanoes poured them out in fiery streams, as waters running over the bare rocks of the continents wore away even the hardest granite, and as the chisels of frost and ice split and shattered the rocks. Then living things began to work their creative magic and little by little these inert materials became soil. Lichens, the rocks' first covering, aided the process of disintegration by their acid secretions and made a lodging place for other life. Mosses took hold in the little pockets of simple soil -- soil formed by crumbling bits of lichen, by the husks of minute insect life, by the debris of a fauna beginning its emergence from the sea.

Life not only formed the soil, but other living things of incredible abundance and diversity now exist within it; if this were not so the soil would be a dead and sterile thing. By their presence and by their activities the myriad organisms of the soil make it capable of supporting the earth's green mantle.

The soil exists in a state of constant change, taking part in cycles that have no beginning and no end. New materials are constantly being contributed as rocks disintegrate, as organic matter decay, and as nitrogen and other gases are brought down in rain from the skies. At the same time other materials are being taken away, borrowed for temporary use by living creatures. Subtle and vastly important chemical changes are constantly in progress, converting elements derived from air and water into forms suitable for use by plants. In all these changes living organisms are active agents.

There are few studies more fascinating, and at the same time more neglected, than those of the teeming populations that exist in the dark realms of the soil. We know too little of the threads that bind the soil organisms to each other and to their world, and to the world above.

Perhaps the most essential organisms in the soil are the smallest -- the invisible hosts of bacteria and of threadlike fungi. Statistics of their abundance take us at once into astronomical figures. A teaspoonful of topsoil may contain billions of bacteria.
In spite of their minute size, the total weight of this host of bacteria in the top foot of a single acre of fertile soil may be as much as a thousand pounds. Ray fungi, growing in long threadlike filaments, are somewhat less numerous than the bacteria, yet because they are larger their total weight in a given amount of soil may be about the same. With small green cells called algae, these make up the microscopic plant life of the soil.

Bacteria, fungi, and algae are the principal agents of decay, reducing plant and animal residues to their component minerals.
The vast cyclic movements of chemical elements such as carbon and nitrogen through soil and air and living tissue could not proceed without these microplants. Without the nitrogen-fixing bacteria, for example, plants would starve for want of nitrogen, though surrounded by a sea of nitrogen-containing air. Other organisms form carbon dioxide, which, as carbonic acid, aids in dissolving rock. Still other soil microbes perform various oxidations and reductions by which minerals such as iron, manganese, and sulfur are transformed and made available to plants.

Also present in prodigious numbers are microscopic mites and primitive wingless insects called springtails. Despite their small size they play an important part in breaking down the residues of plants, aiding in the slow conversion of the litter of the forest floor to soil. The specialization of some of these minute creatures for their task is almost incredible. Several species of mites, for example, can begin life only within the fallen needles of a spruce tree. Sheltered here, they digest out the inner tissues of the needle. When the mites have completed their development only the outer layer of cells remains. The truly staggering task of dealing with the tremendous amount of plant material in the annual leaf fall belongs to some of the small insects of the soil and the forest floor. They macerate and digest the leaves, and aid in mixing the decomposed matter with the surface soil.

Besides all this horde of minute but ceaselessly toiling creatures there are of course many larger forms, for soil life runs the gamut from bacteria to mammals. Some are permanent residents of the dark subsurface layers; some hibernate or spend definite parts of their life cycles in underground chambers; some freely come and go between their burrows and the upper world. In general the effect of all this habitation of the soil is to aerate it and improve both its drainage and the penetration of water throughout the layers of plant growth.

Of all the larger inhabitants of the soil, probably none is more important than the earthworm. Over three quarters of a century ago, Charles Darwin published a book titled The Formation of Vegetable Mould, through the Action of Worms, with Observations on Their Habits. In it he gave the world its first understanding of the fundamental role of earthworms as geologic agents for the transport of soil -- a picture of surface rocks being gradually covered by fine soil brought up from below by the worms, in annual amounts running to many tons to the acre in most favorable areas. At the same time, quantities of organic matter contained in leaves and grass (as much as 20 pounds to the square yard in six months) are drawn down into the burrows and incorporated in soil. Darwin's calculations showed that the toil of earthworms might add a layer of soil an inch to an inch and a half thick in a ten-year period. And this is by no means all they do: their burrows aerate the soil, keep it well drained, and aid the penetration of plant roots. The presence of earthworms increases the nitrifying powers of the soil bacteria and decreases putrifaction of the soil. Organic matter is broken down as it passes through the digestive tracts of the worms and the soil is enriched by their excretory products.

This soil community, then, consists of a web of interwoven lives, each in some way related to the others -- the living creatures depending on the soil, but the soil in turn a vital element of the earth only so long as this community within it flourishes.

The problem that concerns us here is one that has received little consideration: What happens to these incredibly numerous and vitally necessary inhabitants of the soil when poisonous chemicals are carried down into their world, either introduced directly as soil "sterilants" or borne on the rain that has picked up a lethal contamination as it filters through the leaf canopy of forest and orchard and cropland? Is it reasonable to suppose that we can apply a broad-spectrum insecticide to kill the burrowing larval stages of a crop-destroying insect, for example, without also killing the "good" insects whose function may be the essential one of breaking down organic matter? Or can we use a nonspecific fungicide without also killing the fungi that inhabit the roots of many trees in a beneficial association that aids the tree in extracting nutrients from the soil?

The plain truth is that this critically important subject of the ecology of the soil has been largely neglected even by scientists and almost completely ignored by control men. Chemical control of insects seems to have proceeded on the assumption that the soil could and would sustain any amount of insult via the introduction of poisons without striking back. The very nature of the world of the soil has been largely ignored.

From the few studies that have been made, a picture of the impact of pesticides on the soil is slowly emerging. It is not surprising that the studies are not always in agreement, for soil types vary so enormously that what causes damage in one may be innocuous in another. Light sandy soils suffer far more heavily than humus types. Combinations of chemicals seem to do more harm than separate applications. Despite the varying results, enough solid evidence of harm is accumulating to cause apprehension on the part of many scientists.

Under some conditions, the chemical conversions and transformations that lie at the very heart of the living world are affected. Nitrification, which makes atmospheric nitrogen available to plants, is an example. The herbicide 2,4-D causes a temporary interruption of nitrification. In recent experiments in Florida, lindane, heptachlor, and BHC (benzene hexachloride) reduced nitrification after only two weeks in soil; BHC and DDT had significantly detrimental effects a year after treatment. In other experiments BHC, aldrin, lindane, heptachlor, and DDD all prevented nitrogen- fixing bacteria from forming the necessary root nodules on leguminous plants. A curious but beneficial relation between fungi and the roots of higher plants is seriously disrupted.

Sometimes the problem is one of upsetting that delicate balance of populations by which nature accomplishes far- reaching aims. Explosive increases in some kinds of soil organisms have occurred when others have been reduced by insecticides, disturbing the relation of predator to prey. Such changes could easily alter the metabolic activity of the soil and affect its productivity. They could also mean that potentially harmful organisms, formerly held in check, could escape from their natural controls and rise to pest status.

One of the most important things to remember about insecticides in soil is their long persistence, measured not in months but in years. Aldrin has been recovered after four years, both as traces and more abundantly as converted to dieldrin. Enough toxaphene remains in sandy soil ten years after its application to kill termites. Benzene hexachloride persists at least eleven years; heptachlor or a more toxic derived chemical, at least nine. Chlordane has been recovered twelve years after its application, in the amount of 15 per cent of the original quantity.

Seemingly moderate applications of insecticides over a period of years may build up fantastic quantities in soil. Since the chlorinated hydrocarbons are persistent and long-lasting, each application is merely added to the quantity remaining from the previous one. The old legend that "a pound of DDT to the acre is harmless" means nothing if spraying is repeated. Potato soils have been found to contain up to 15 pounds of DDT per acre, corn soils up to 19. A cranberry bog under study contained 34.5 pounds to the acre. Soils from apple orchards seem to reach the peak of contamination, with DDT accumulating at a rate that almost keeps pace with its rate of annual application. Even in a single season, with orchards sprayed four or more times, DDT residues may build up to peaks of 30 to 50 pounds. With repeated spraying over the years the range between trees is from 26 to 60 pounds to the acre; under trees, up to 113 pounds.

Arsenic provides a classic case of the virtually permanent poisoning of the soil. Although arsenic as a spray on growing tobacco has been largely replaced by the synthetic organic insecticides since the mid-'40's, the arsenic content of cigarettes made from American-grown tobacco increased more than 300 per cent between the years 1932 and 1952. Later studies have revealed increases of as much as 600 per cent. Dr. Henry S. Satterlee, an authority on arsenic toxicology, says that although organic insecticides have been largely substituted for arsenic, the tobacco plants continue to pick up the old poison, for the soils of tobacco plantations are now thoroughly impregnated with residues of a heavy and relatively insoluble poison, arsenate of lead. This will continue to release arsenic in soluble form. The soil of a large proportion of the land planted to tobacco has been subjected to "cumulative and well-nigh permanent poisoning," according to Dr. Satterlee. Tobacco grown in the eastern Mediterranean countries where arsenical insecticides are not used has shown no such increase in arsenic content.

We are therefore confronted with a second problem. We must not only be concerned with what is happening to the soil, we must wonder to what extent insecticides are absorbed from contaminated soils and introduced into plant tissues. Much depends on the type of soil, the crop, and the nature and concentration of the insecticide. Soil high in organic matter releases smaller quantities of poisons than others. Carrots absorb more insecticide than any other crop studied; if the chemical used happens to be lindane, carrots actually accumulate higher concentrations than are present in the soil. In the future it may become necessary to analyze soils for insecticides before planting certain food crops. Otherwise even unsprayed crops may take up enough insecticide merely from the soil to render them unfit for market.

This very sort of contamination has created endless problems for at least one leading manufacturer of baby foods who has been unwilling to buy any fruits or vegetables on which toxic insecticides have been used. The chemical that caused him the most trouble was benzene hexachloride (BHC), which is taken up by the roots and tubers of plants, advertising its presence by a musty taste and odor. Sweet potatoes grown on California fields where BHC had been used two years earlier contained residues and had to be rejected. In one year, in which the firm had contracted in South Carolina for its total requirements of sweet potatoes, so large a proportion of the acreage was found to be contaminated that the company was forced to buy in the open market at a considerable financial loss. Over the years a variety of fruits and vegetables, grown in various states, have had to be rejected. The most stubborn problems were concerned with peanuts. In the southern states peanuts are usually grown in rotation with cotton, on which BHC is extensively used. Peanuts grown later in this soil pick up considerable amounts of the insecticide. Actually, only a trace is enough to incorporate the telltale musty odor and taste. The chemical penetrates the nuts and cannot be removed. Processing, far from removing the mustiness, sometimes accentuates it. The only course open to a manufacturer determined to exclude BHC residues is to reject all produce created with the chemical or grown on soils contaminated with it.

Sometimes the menace is to the crop itself -- a menace that remains as long as the insecticide contamination is in the soil. Some insecticides affect sensitive plants such as beans, wheat, barley, or rye, retarding root development or depressing growth of seedlings. The experience of the hop growers in Washington and Idaho is an example. During the spring of 1955 many of these growers undertook a large-scale program to control the strawberry root weevil, whose larvae had become abundant on the roots of the hops. On the advice of agricultural experts and insecticide manufacturers, they chose heptachlor as the control agent. Within a year after the heptachlor was applied, the vines in the treated yards were wilting and dying. In the untreated fields there was no trouble; the damage stopped at the border between treated and untreated fields. The hills were replanted at great expense, but in another year the new roots, too, were found to be dead. Four years later the soil still contained heptachlor, and scientists were unable to predict how long it would remain poisonous, or to recommend any procedure for correcting the condition. The federal Department of Agriculture, which as late as March 1959 found itself in the anomalous position of declaring heptachlor to be acceptable for use on hops in the form of a soil treatment, belatedly withdrew its registration for such use. Meanwhile, the hop growers sought what redress they could in the courts.

As applications of pesticides continue and the virtually indestructible residues continue to build up in the soil, it is almost certain that we are heading for trouble. This was the consensus of a group of specialists who met at Syracuse University in 1960 to discuss the ecology of the soil. These men summed up the hazards of using "such potent and little understood tools" as chemicals and radiation: "A few false moves on the part of man may result in destruction of soil productivity and the arthropods may well take over."
Site Admin
Posts: 35790
Joined: Thu Aug 01, 2013 5:21 am

Re: Silent Spring, by Rachel Carson

Postby admin » Tue Aug 04, 2015 12:17 am

6. Earth's Green Mantle


WATER, SOIL, and the earth's green mantle of plants make up the world that supports the animal life of the earth. Although modern man seldom remembers the fact, he could not exist without the plants that harness the sun's energy and manufacture the basic foodstuffs he depends upon for life. Our attitude toward plants is a singularly narrow one. If we see any immediate utility in a plant we foster it. If for any reason we find its presence undesirable or merely a matter of indifference, we may condemn it to destruction forthwith. Besides the various plants that are poisonous to man or his livestock, or crowd out food plants, many are marked for destruction merely because, according to our narrow view, they happen to be in the wrong place at the wrong time. Many others are destroyed merely because they happen to be associates of the unwanted plants.

The earth's vegetation is part of a web of life in which there are intimate and essential relations between plants and the earth, between plants and other plants, between plants and animals. Sometimes we have no choice but to disturb these relationships, but we should do so thoughtfully, with full awareness that what we do may have consequences remote in time and place. But no such humility marks the booming "weed killer" business of the present day, in which soaring sales and expanding uses mark the production of plant-killing chemicals.

One of the most tragic examples of our unthinking bludgeoning of the landscape is to be seen in the sagebrush lands of the West, where a vast campaign is on to destroy the sage and to substitute grasslands. If ever an enterprise needed to be illuminated with a sense of the history and meaning of the landscape, it is this. For here the natural landscape is eloquent of the interplay of forces that have created it. It is spread before us like the pages of an open book in which we can read why the land is what it is, and why we should preserve its integrity. But the pages lie unread.

The land of the sage is the land of the high western plains and the lower slopes of the mountains that rise above them, a land born of the great uplift of the Rocky Mountain system many millions of years ago. It is a place of harsh extremes of climate: of long winters when blizzards drive down from the mountains and snow lies deep on the plains, of summers whose heat is relieved by only scanty rains, with drought biting deep into the soil, and drying winds stealing moisture from leaf and stem.

As the landscape evolved, there must have been a long period of trial and error in which plants attempted the colonization of this high and windswept land. One after another must have failed. At last one group of plants evolved which combined all the qualities needed to survive. The sage -- low-growing and shrubby -- could hold its place on the mountain slopes and on the plains, and within its small gray leaves it could hold moisture enough to defy the thieving winds. It was no accident, but rather the result of long ages of experimentation by nature, that the great plains of the West became the land of the sage.

Along with the plants, animal life, too, was evolving in harmony with the searching requirements of the land. In time there were two as perfectly adjusted to their habitat as the sage. One was a mammal, the fleet and graceful pronghorn antelope. The other was a bird, the sage grouse -- the "cock of the plains" of Lewis and Clark.

The sage and the grouse seem made for each other. The original range of the bird coincided with the range of the sage, and as the sagelands have been reduced, so the populations of grouse have dwindled. The sage is all things to these birds of the plains. The low sage of the foothill ranges shelters their nests and their young; the denser growths are loafing and roosting areas; at all times the sage provides the staple food of the grouse. Yet it is a two-way relationship. The spectacular courtship displays of the cocks help loosen the soil beneath and around the sage, aiding invasion by grasses which grow in the shelter of sagebrush.

The antelope, too, have adjusted their lives to the sage. They are primarily animals of the plains, and in winter when the first snows come those that have summered in the mountains move down to the lower elevations. There the sage provides the food that tides them over the winter. Where all other plants have shed their leaves, the sage remains evergreen, the gray-green leaves -- bitter, aromatic, rich in proteins, fats, and needed minerals -- clinging to the stems of the dense and shrubby plants. Though the snows pile up, the tops of the sage remain exposed, or can be reached by the sharp, pawing hoofs of the antelope. Then grouse feed on them too, finding them on bare and windswept ledges or following the antelope to feed where they have scratched away the snow.

And other life looks to the sage. Mule deer often feed on it. Sage may mean survival for winter-grazing livestock. Sheep graze many winter ranges where the big sagebrush forms almost pure stands. For half the year it is their principal forage, a plant of higher energy value than even alfalfa hay.

The bitter upland plains, the purple wastes of sage, the wild, swift antelope, and the grouse are then a natural system in perfect balance. Are? The verb must be changed -- at least in those already vast and growing areas where man is attempting to improve on nature's way. In the name of progress the land management agencies have set about to satisfy the insatiable demands of the cattlemen for more grazing land. By this they mean grassland -- grass without sage. So in a land which nature found suited to grass growing mixed with and under the shelter of sage, it is now proposed to eliminate the sage and create unbroken grassland. Few seem to have asked whether grasslands are a stable and desirable goal in this region. Certainly nature's own answer was otherwise. The annual precipitation in this land where the rains seldom fall is not enough to support good sod-forming grass; it favors rather the perennial bunchgrass that grows in the shelter of the sage.

Yet the program of sage eradication has been under way for a number of years. Several government agencies are active in it; industry has joined with enthusiasm to promote and encourage an enterprise which creates expanded markets not only for grass seed but for a large assortment of machines for cutting and plowing and seeding. The newest addition to the weapons is the use of chemical sprays. Now millions of acres of sagebrush lands are sprayed each year.

What are the results? The eventual effects of eliminating sage and seeding with grass are largely conjectural. Men of long experience with the ways of the land say that in this country there is better growth of grass between and under the sage than can possibly be had in pure stands, once the moisture-holding sage is gone.

But even if the program succeeds in its immediate objective, it is clear that the whole closely knit fabric of life has been ripped apart. The antelope and the grouse will disappear along with the sage. The deer will suffer, too, and the land will be poorer for the destruction of the wild things that belong to it. Even the livestock which are the intended beneficiaries will suffer; no amount of lush green grass in summer can help the sheep starving in the winter storms for lack of the sage and bitterbrush and other wild vegetation of the plains.

These are the first and obvious effects. The second is of a kind that is always associated with the shotgun approach to nature: the spraying also eliminates a great many plants that were not its intended target. Justice William O. Douglas, in his recent book My Wilderness: East to Katahdin, has told of an appalling example of ecological destruction wrought by the United States Forest Service in the Bridger National Forest in Wyoming. Some 10,000 acres of sagelands were sprayed by the Service, yielding to pressure of cattlemen for more grasslands. The sage was killed, as intended. But so was the green, life-giving ribbon of willows that traced its way across these plains, following the meandering streams. Moose had lived in these willow thickets, for willow is to the moose what sage is to the antelope. Beaver had lived there, too, feeding on the willows, felling them and making a strong dam across the tiny stream. Through the labor of the beavers, a lake backed up. Trout in the mountain streams seldom were more than six inches long; in the lake they thrived so prodigiously that many grew to five pounds. Waterfowl were attracted to the lake, also. Merely because of the presence of the willows and the beavers that depended on them, the region was an attractive recreational area with excellent fishing and hunting.

But with the "improvement" instituted by the Forest Service, the willows went the way of the sagebrush, killed by the same impartial spray. When Justice Douglas visited the area in 1959, the year of the spraying, he was shocked to see the shriveled and dying willows -- the "vast, incredible damage." What would become of the moose? Of the beavers and the little world they had constructed? A year later he returned to read the answers in the devastated landscape. The moose were gone and so were the beaver. Their principal dam had gone out for want of attention by its skilled architects, and the lake had drained away. None of the large trout were left. None could live in the tiny creek that remained, threading its way through a bare, hot land where no shade remained. The living world was shattered.


Besides the more than four million acres of rangelands sprayed each year, tremendous areas of other types of land are also potential or actual recipients of chemical treatments for weed control. For example, an area larger than all of New England -- some 50 million acres -- is under management by utility corporations and much of it is routinely treated for "brush control." In the Southwest an estimated 75 million acres of mesquite lands require management by some means, and chemical spraying is the method most actively pushed. An unknown but very large acreage of timber- producing lands is now aerially sprayed in order to "weed out" the hardwoods from the "more spray-resistant conifers. Treatment of agricultural lands with herbicides doubled in the decade following 1949, totaling 53 million acres in 1959. And the combined acreage of private lawns, parks, and golf courses now being treated must reach an astronomical figure.

The chemical weed killers are a bright new toy. They work in a spectacular way; they give a giddy sense of power over nature to those who wield them, and as for the long-range and less obvious effects -- these are easily brushed aside as the baseless imaginings of pessimists. The "agricultural engineers" speak blithely of "chemical plowing" in a world that is urged to beat its plowshares into spray guns. The town fathers of a thousand communities lend willing ears to the chemical salesman and the eager contractors who will rid the roadsides of "brush" -- for a price. It is cheaper than mowing, is the cry. So, perhaps, it appears in the neat rows of figures in the official books; but were the true costs entered, the costs not only in dollars but in the many equally valid debits we shall presently consider, the wholesale broadcasting of chemicals would be seen to be more costly in dollars as well as infinitely damaging to the long-range health of the landscape and to all the varied interests that depend on it.

Take, for instance, that commodity prized by every chamber of commerce throughout the land -- the good will of vacationing tourists. There is a steadily growing chorus of outraged protest about the disfigurement of once beautiful roadsides by chemical sprays, which substitute a sere expanse of brown, withered vegetation for the beauty of fern and wildflower, of native shrubs adorned with blossom or berry. "We are making a dirty, brown, dying-looking mess along the sides of our roads," a New England woman wrote angrily to her newspaper. "This is not what the tourists expect, with all the money we are spending advertising the beautiful scenery."

In the summer of 1960 conservationists from many states converged on a peaceful Maine island to witness its presentation to the National Audubon Society by its owner, Millicent Todd Bingham. The focus that day was on the preservation of the natural landscape and of the intricate web of life whose interwoven strands lead from microbes to man. But in the background of all the conversations among the visitors to the island was indignation at the despoiling of the roads they had traveled. Once it had been a joy to follow those roads through the evergreen forests, roads lined with bayberry and sweet fern, alder and huckleberry. Now all was brown desolation. One of the conservationists wrote of that August pilgrimage to a Maine island: "I returned ... angry at the desecration of the Maine roadsides. Where, in previous years, the highways were bordered with wildflowers and attractive shrubs, there were only the scars of dead vegetation for mile after mile.... As an economic proposition, can Maine afford the loss of tourist goodwill that such sights induce?"

Maine roadsides are merely one example, though a particularly sad one for those of us who have a deep love for the beauty of that state, of the senseless destruction that is going on in the name of roadside brush control throughout the nation.

Botanists at the Connecticut Arboretum declare that the elimination of beautiful native shrubs and wildflowers has reached the proportions of a "roadside crisis." Azaleas, mountain laurel, blueberries, huckleberries, viburnums, dogwood, bayberry, sweet fern, low shadbush, winterberry, chokecherry, and wild plum are dying before the chemical barrage. So are the daisies, black-eyed Susans, Queen Anne's lace, goldenrods, and fall asters which lend grace and beauty to the landscape.

The spraying is not only improperly planned but studded with abuses such as these. In a southern New England town one contractor finished his work with some chemical remaining in his tank. He discharged this along woodland roadsides where no spraying had been authorized. As a result the community lost the blue and golden beauty of its autumn roads, where asters and goldenrod would have made a display worth traveling far to see. In another New England community a contractor changed the state specifications for town spraying without the knowledge of the highway department and sprayed roadside vegetation to a height of eight feet instead of the specified maximum of four feet, leaving a broad, disfiguring, brown swath. In a Massachusetts community the town officials purchased a weed killer from a zealous chemical salesman, unaware that it contained arsenic. One result of the subsequent roadside spraying was the death of a dozen cows from arsenic poisoning.

Trees within the Connecticut Arboretum Natural Area were seriously injured when the town of Waterford sprayed the roadsides with chemical weed killers in 1957. Even large trees not directly sprayed were affected. The leaves of the oaks began to curl and turn brown, although it was the season for spring growth. Then new shoots began to be put forth and grew with abnormal rapidity, giving a weeping appearance to the trees. Two seasons later, large branches on these trees had died, others were without leaves, and the deformed, weeping effect of whole trees persisted.

I know well a stretch of road where nature's own landscaping has provided a border of alder, viburnum, sweet fern, and juniper with seasonally changing accents of bright flowers, or of fruits hanging in jeweled clusters in the fall. The road had no heavy load of traffic to support; there were few sharp curves or intersections where brush could obstruct the driver's vision. But the sprayers took over and the miles along that road became something to be traversed quickly, a sight to be endured with one's mind closed to thoughts of the sterile and hideous world we are letting our technicians make. But here and there authority had somehow faltered and by an unaccountable oversight there were oases of beauty in the midst of austere and regimented control -- oases that made the desecration of the greater part of the road the more unbearable. In such places my spirit lifted to the sight of the drifts of white clover or the clouds of purple vetch with here and there the flaming cup of a wood lily.

Such plants are "weeds" only to those who make a business of selling and applying chemicals. In a volume of Proceedings of one of the weed-control conferences that are now regular institutions, I once read an extraordinary statement of a weed killer's philosophy. The author defended the killing of good plants "simply because they are in bad company." Those who complain about killing wildflowers along roadsides reminded him, he said, of antivivisectionists "to whom, if one were to judge by their actions, the life of a stray dog is more sacred than the lives of children."

To the author of this paper, many of us would unquestionably be suspect, convicted of some deep perversion of character because we prefer the sight of the vetch and the clover and the wood lily in all their delicate and transient beauty to that of roadsides scorched as by fire, the shrubs brown and brittle, the bracken that once lifted high its proud lacework now withered and drooping. We would seem deplorably weak that we can tolerate the sight of such "weeds," that we do not rejoice in their eradication, that we are not filled with exultation that man has once more triumphed over miscreant nature.

Justice Douglas tells of attending a meeting of federal field men who were discussing protests by citizens against plans for the spraying of sagebrush that I mentioned earlier in this chapter. These men considered it hilariously funny that an old lady had opposed the plan because the wildflowers would be destroyed. "Yet, was not her right to search out a banded cup or a tiger lily as inalienable as the right of stockmen to search out grass or of a lumberman to claim a tree?" asks this humane and perceptive jurist. "The esthetic values of the wilderness are as much our inheritance as the veins of copper and gold in our hills and the forests in our mountains."

There is of course more to the wish to preserve our roadside vegetation than even such esthetic considerations. In the economy of nature the natural vegetation has its essential place. Hedgerows along country roads and bordering fields provide food, cover, and nesting areas for birds and homes for many small animals. Of some 70 species of shrubs and vines that are typical roadside species in the eastern states alone, about 65 are important to wildlife as food.

Such vegetation is also the habitat of wild bees and other pollinating insects. Man is more dependent on these wild pollinators than he usually realizes. Even the farmer himself seldom understands the value of wild bees and often participates in the very measures that rob him of their services. Some agricultural crops and many wild plants are partly or wholly dependent on the services of the native pollinating insects. Several hundred species of wild bees take part in the pollination of cultivated crops -- 100 species visiting the flowers of alfalfa alone. Without insect pollination, most of the soil-holding and soil-enriching plants of uncultivated areas would die out, with far-reaching consequences to the ecology of the whole region. Many herbs, shrubs, and trees of forests and range depend on native insects for their reproduction; without these plants many wild animals and range stock would find little food. Now clean cultivation and the chemical destruction of hedgerows and weeds are eliminating the last sanctuaries of these pollinating insects and breaking the threads that bind life to life.

These insects, so essential to our agriculture and indeed to our landscape as we know it, deserve something better from us than the senseless destruction of their habitat. Honeybees and wild bees depend heavily on such "weeds" as goldenrod, mustard, and dandelions for pollen that serves as the food of their young. Vetch furnishes essential spring forage for bees before the alfalfa is in bloom, tiding them over this early season so that they are ready to pollinate the alfalfa. In the fall they depend on goldenrod at a season when no other food is available, to stock up for the winter. By the precise and delicate timing that is nature's own, the emergence of one species of wild bees takes place on the very day of the opening of the willow blossoms. There is no dearth of men who understand these things, but these are not the men who order the wholesale drenching of the landscape with chemicals.

And where are the men who supposedly understand the value of proper habitat for the preservation of wildlife? Too many of them are to be found defending herbicides as "harmless" to wildlife because they are thought to be less toxic than insecticides. Therefore, it is said, no harm is done. But as the herbicides rain down on forest and field, on marsh and rangeland, they are bringing about marked changes and even permanent destruction of wildlife habitat. To destroy the homes and the food of wildlife is perhaps worse in the long run than direct killing.

The irony of this all-out chemical assault on roadsides and utility rights-of-way is twofold. It is perpetuating the problem it seeks to correct, for as experience has clearly shown, the blanket application of herbicides does not permanently control roadside "brush" and the spraying has to be repeated year after year. And as a further irony, we persist in doing this despite the fact that a perfectly sound method of selective spraying is known, which can achieve long-term vegetational control and eliminate repeated spraying in most types of vegetation.

The object of brush control along roads and rights-of-way is not to sweep the land dear of everything but grass; it is, rather, to eliminate plants ultimately tall enough to present an obstruction to drivers' vision or interference with wires on rights-of-way. This means, in general, trees. Most shrubs are low enough to present no hazard; so, certainly, are ferns and wildflowers.

Selective spraying was developed by Dr. Frank Egler during a period of years at the American Museum of Natural History as director of a Committee for Brush Control Recommendations for Rights-of-Way. It took advantage of the inherent stability of nature, building on the fact that most communities of shrubs are strongly resistant to invasion by trees. By comparison, grasslands are easily invaded by tree seedlings. The object of selective spraying is not to produce grass on roadsides and rights-of-way but to eliminate the tall woody plants by direct treatment and to preserve all other vegetation. One treatment may be sufficient, with a possible follow-up for extremely resistant species; thereafter the shrubs assert control and the trees do not return. The best and cheapest controls for vegetation are not chemicals but other plants.

The method has been tested in research areas scattered throughout the eastern United States. Results show that once properly treated, an area becomes stabilized, requiring no respraying for at least 20 years. The spraying can often be done by men on foot, using knapsack sprayers, and having complete control over their material. Sometimes compressor pumps and material can be mounted on truck chassis, but there is no blanket spraying. Treatment is directed only to trees and any exceptionally tall shrubs that must be eliminated. The integrity of the environment is thereby preserved, the enormous value of the wildlife habitat remains intact, and the beauty of shrub and fern and wildflower has not been sacrificed.

Here and there the method of vegetation management by selective spraying has been adopted. For the most part, entrenched custom dies hard and blanket spraying continues to thrive, to exact its heavy annual costs from the taxpayer, and to inflict its damage on the ecological web of life. It thrives, surely, only because the facts are not known. When taxpayers understand that the bill for spraying the town roads should come due only once a generation instead of once a year, they will surely rise up and demand a change of method.

Among the many advantages of selective spraying is the fact that it minimizes the amount of chemical applied to the landscape. There is no broadcasting of material but, rather, concentrated application to the base of the trees. The potential harm to wildlife is therefore kept to a minimum.

The most widely used herbicides are 2,4-D, 2,4,5-T, and related compounds. Whether or not these are actually toxic is a matter of controversy. People spraying their lawns with 2,4-D and becoming wet with spray have occasionally developed severe neuritis and even paralysis. Although such incidents are apparently uncommon, medical authorities advise caution in use of such compounds. Other hazards, more obscure, may also attend the use of 2,4-D. It has been shown experimentally to disturb the basic physiological process of respiration in the cell, and to imitate X-rays in damaging the chromosomes. Some very recent work indicates that reproduction of birds may be adversely affected by these and certain other herbicides at levels far below those that cause death.

Apart from any directly toxic effects, curious indirect results follow the use of certain herbicides. It has been found that animals, both wild herbivores and livestock, are sometimes strangely attracted to a plant that has been sprayed, even though it is not one of their natural foods. If a highly poisonous herbicide such as arsenic has been used, this intense desire to reach the wilting vegetation inevitably has disastrous results. Fatal results may follow, also, from less toxic herbicides if the plant itself happens to be poisonous or perhaps to possess thorns or burs. Poisonous range weeds, for example, have suddenly become attractive to livestock after spraying, and the animals have died from indulging this unnatural appetite. The literature of veterinary medicine abounds in similar examples: swine eating sprayed cockleburs with consequent severe illness, lambs eating sprayed thistles, bees poisoned by pasturing on mustard sprayed after it came into bloom. Wild cherry, the leaves of which are highly poisonous, has exerted a fatal attraction for cattle once its foliage has been sprayed with 2,4-D. Apparently the wilting that follows spraying (or cutting) makes the plant attractive. Ragwort has provided other examples. Livestock ordinarily avoid this plant unless forced to turn to it in late winter and early spring by lack of other forage. However, the animals eagerly feed on it after its foliage has been sprayed with 2,4-D.

The explanation of this peculiar behavior sometimes appears to lie in the changes which the chemical brings about in the metabolism of the plant itself. There is temporarily a marked increase in sugar content, making the plant more attractive to many animals.

Another curious effect of 2,4-D has important effects for livestock, wildlife, and apparently for men as well. Experiments carried out about a decade ago showed that after treatment with this chemical there is a sharp increase in the nitrate content of corn and of sugar beets. The same effect was suspected in sorghum, sunflower, spiderwort, lambs quarters, pigweed, and smartweed. Some of these are normally ignored by cattle, but are eaten with relish after treatment with 2,4-D. A number of deaths among cattle have been traced to sprayed weeds, according to some agricultural specialists. The danger lies in the increase in nitrates, for the peculiar physiology of the ruminant at once poses a critical problem. Most such animals have a digestive system of extraordinary complexity, including a stomach divided into four chambers. The digestion of cellulose is accomplished through the action of microorganisms (rumen bacteria) in one of the chambers. When the animal feeds on vegetation containing an abnormally high level of nitrates, the microorganisms in the rumen act on the nitrates to change them into highly toxic nitrites. Thereafter a fatal chain of events ensues: the nitrites act on the blood pigment to form a chocolate-brown substance in which the oxygen is so firmly held that it cannot take part in respiration, hence oxygen is not transferred from the lungs to the tissues. Death occurs within a few hours from anoxia, or lack of oxygen. The various reports of livestock losses after grazing on certain weeds treated with 2,4-D therefore have a logical explanation. The same danger exists for wild animals belonging to the group of ruminants, such as deer, antelope, sheep, and goats.

Although various factors (such as exceptionally dry weather) can cause an increase in nitrate content, the effect of the soaring sales and applications of 2,4-D cannot be ignored. The situation was considered important enough by the University of Wisconsin Agricultural Experiment Station to justify a warning in 1957 that "plants killed by 2,4-D may contain large amounts of nitrate." The hazard extends to human beings as well as animals and may help to explain the recent mysterious increase in "silo deaths." When corn, oats, or sorghum containing large amounts of nitrates are ensiled they release poisonous nitrogen oxide gases, creating a deadly hazard to anyone entering the silo. Only a few breaths of one of these gases can cause a diffuse chemical pneumonia. In a series of such cases studied by the University of Minnesota Medical School all but one terminated fatally.


"Once again we are walking in nature like an elephant in the china cabinet." So C. J. Briejer, a Dutch scientist of rare understanding, sums up our use of weed killers. "In my opinion too much is taken for granted. We do not know whether all weeds in crops are harmful or whether some of them are useful," says Dr. Briejer.

Seldom is the question asked, What is the relation between the weed and the soil? Perhaps, even from our narrow standpoint of direct self-interest, the relation is a useful one. As we have seen, soil and the living things in and upon it exist in a relation of interdependence and mutual benefit. Presumably the weed is taking something from the soil; perhaps it is also contributing something to it. A practical example was provided recently by the parks in a city in Holland. The roses were doing badly. Soil samples showed heavy infestations by tiny nematode worms. Scientists of the Dutch Plant Protection Service did not recommend chemical sprays or soil treatments; instead, they suggested that marigolds be planted among the roses. This plant, which the purist would doubtless consider a weed in any rosebed, releases an excretion from its roots that kills the soil nematodes. The advice was taken; some beds were planted with marigolds, some left without as controls. The results were striking. With the aid of the marigolds the roses flourished; in the control beds they were sickly and drooping. Marigolds are now used in many places for combating nematodes.

In the same way, and perhaps quite unknown to us, other plants that we ruthlessly eradicate may be performing a function that is necessary to the health of the soil. One very useful function of natural plant communities -- now pretty generally stigmatized as "weeds" -- is to serve as an indicator of the condition of the soil. This useful function is of course lost where chemical weed killers have been used.

Those who find an answer to all problems in spraying also overlook a matter of great scientific importance -- the need to preserve some natural plant communities. We need these as a standard against which we can measure the changes our own activities bring about. We need them as wild habitats in which original populations of insects and other organisms can be maintained, for, as will be explained in Chapter 16, the development of resistance to insecticides is changing the genetic factors of insects and perhaps other organisms. One scientist has even suggested that some sort of "zoo" should be established to preserve insects, mites, and the like, before their genetic composition is further changed.

Some experts warn of subtle but far-reaching vegetational shifts as a result of the growing use of herbicides. The chemical 2,4-D, by killing out the broad-leaved plants, allows the grasses to thrive in the reduced competition -- now some of the grasses themselves have become "weeds," presenting a new problem in control and giving the cycle another turn. This strange situation is acknowledged in a recent issue of a journal devoted to crop problems: "With the widespread use of 2,4-D to control broadleaved weeds, grass weeds in particular have increasingly become a threat to corn and soybean yields."

Ragweed, the bane of hay fever sufferers, offers an interesting example of the way efforts to control nature sometimes boomerang. Many thousands of gallons of chemicals have been discharged along roadsides in the name of ragweed control. But the unfortunate truth is that blanket spraying is resulting in more ragweed, not less. Ragweed is an annual; its seedlings require open soil to become established each year. Our best protection against this plant is therefore the maintenance of dense shrubs, ferns, and other perennial vegetation. Spraying frequently destroys this protective vegetation and creates open, barren areas which the ragweed hastens to fill. It is probable, moreover, that the pollen content of the atmosphere is not related to roadside ragweed, but to the ragweed of city lots and fallow fields.

The booming sales of chemical crabgrass killers are another example of how readily unsound methods catch on. There is a cheaper and better way to remove crabgrass than to attempt year after year to kill it out with chemicals. This is to give it competition of a kind it cannot survive, the competition of other grass. Crabgrass exists only in an unhealthy lawn. It is a symptom, not a disease in itself. By providing a fertile soil and giving the desired grasses a good start, it is possible to create an environment in which crabgrass cannot grow, for it requires open space in which it can start from seed year after year.

Instead of treating the basic condition, suburbanites -- advised by nurserymen who in turn have been advised by the chemical manufacturers -- continue to apply truly astonishing amounts of crabgrass killers to their lawns each year. Marketed under trade names which give no hint of their nature, many of these preparations contain such poisons as mercury, arsenic, and chlordane. Application at the recommended rates leaves tremendous amounts of these chemicals on the lawn. Users of one product, for example, apply 60 pounds of technical chlordane to the acre if they follow directions. If they use another of the many available products, they are applying 175 pounds of metallic arsenic to the acre. The toll of dead birds, as we shall see in Chapter 8, is distressing. How lethal these lawns may be for human beings is unknown.

The success of selective spraying for roadside and right-of-way vegetation, where it has been practiced, offers hope that equally sound ecological methods may be developed for other vegetation programs for farms, forests, and ranges -- methods aimed not at destroying a particular species but at managing vegetation as a living community.

Other solid achievements show what can be done. Biological control has achieved some of its most spectacular successes in the area of curbing unwanted vegetation. Nature herself has met many of the problems that now beset us, and she has usually solved them in her own successful way. Where man has been intelligent enough to observe and to emulate Nature he, too, is often rewarded with success.

An outstanding example in the field of controlling unwanted plants is the handling of the Klamath-weed problem in California. Although the Klamath weed, or goatweed, is a native of Europe (where it is called St. Johnswort), it accompanied man in his westward migrations, first appearing in the United States in 1793 near Lancaster, Pennsylvania. By 1900 it had reached California in the vicinity of the Klamath River, hence the name locally given to it. By 1929 it had occupied about 100,000 acres of rangeland, and by 1952 it had invaded some two and one half million acres.

Klamath weed, quite unlike such native plants as sagebrush, has no place in the ecology of the region, and no animals or other plants require its presence. On the contrary, wherever it appeared livestock became "scabby, sore-mouthed, and unthrifty" from feeding on this toxic plant. Land values declined accordingly, for the Klamath weed was considered to hold the first mortgage.

In Europe the Klamath weed, or St. Johnswort, has never become a problem because along with the plant there have developed various species of insects; these feed on it so extensively that its abundance is severely limited. In particular, two species of beetles in southern France, pea-sized and of metallic color, have their whole beings so adapted to the presence of the weed that they feed and reproduce only upon it.

It was an event of historic importance when the first shipments of these beetles were brought to the United States in 1944, for this was the first attempt in North America to control a plant with a plant-eating insect. By 1948 both species had become so well established that no further importations were needed. Their spread was accomplished by collecting beetles from the original colonies and redistributing them at the rate of millions a year. Within small areas the beetles accomplish their own dispersion, moving on as soon as the Klamath weed dies out and locating new stands with great precision. And as the beetles thin out the weed, desirable range plants that have been crowded out are able to return.

A ten-year survey completed in 1959 showed that control of the Klamath weed had been "more effective than hoped for even by enthusiasts," with the weed reduced to a mere 1 per cent of its former abundance. This token infestation is harmless and is actually needed in order to maintain a population of beetles as protection against a future increase in the weed.

Another extraordinarily successful and economical example of weed control may be found in Australia. With the colonists' usual taste for carrying plants or animals into a new country, a Captain Arthur Phillip had brought various species of cactus into Australia about 1787, intending to use them in culturing cochineal insects for dye. Some of the cacti or prickly pears escaped from his gardens and by 1925 about 20 species could be found growing wild. Having no natural controls in this new territory, they spread prodigiously, eventually occupying about 60 million acres. At least half of this land was so densely covered as to be useless.

In 1920 Australian entomologists were sent to North and South America to study insect enemies of the prickly pears in their native habitat. After trials of several species, 3 billion eggs of an Argentine moth were released in Australia in 1930. Seven years later the last dense growth of the prickly pear had been destroyed and the once uninhabitable areas reopened to settlement and grazing. The whole operation had cost less than a penny per acre. In contrast, the unsatisfactory attempts at chemical control in earlier years had cost about £ 10 per acre.

Both of these examples suggest that extremely effective control of many kinds of unwanted vegetation might be achieved by paying more attention to the role of plant-eating insects. The science of range management has largely ignored this possibility, although these insects are perhaps the most selective of all grazers and their highly restricted diets could easily be turned to man's advantage.
Site Admin
Posts: 35790
Joined: Thu Aug 01, 2013 5:21 am

Re: Silent Spring, by Rachel Carson

Postby admin » Tue Aug 04, 2015 12:25 am

7. Needless Havoc


As MAN PROCEEDS toward his announced goal of the conquest of nature, he has written a depressing record of destruction, directed not only against the earth he inhabits but against the life that shares it with him. The history of the recent centuries has its black passages -- the slaughter of the buffalo on the western plains, the massacre of the shorebirds by the market gunners, the near-extermination of the egrets for their plumage. Now, to these and others like them, we are adding a new chapter and a new kind of havoc -- the direct killing of birds, mammals, fishes, and indeed practically every form of wildlife by chemical insecticides indiscriminately sprayed on the land.

Under the philosophy that now seems to guide our destinies, nothing must get in the way of the man with the spray gun. The incidental victims of his crusade against insects count as nothing; if robins, pheasants, raccoons, cats, or even livestock happen to inhabit the same bit of earth as the target insects and to be hit by the rain of insect-killing poisons no one must protest.

The citizen who wishes to make a fair judgment of the question of wildlife loss is today confronted with a dilemma. On the one hand conservationists and many wildlife biologists assert that the losses have been severe and in some cases even catastrophic. On the other hand the control agencies tend to deny flatly and categorically that such losses have occurred, or that they are of any importance if they have. Which view are we to accept?

The credibility of the witness is of first importance. The professional wildlife biologist on the scene is certainly best qualified to discover and interpret wildlife loss. The entomologist, whose specialty is insects, is not so qualified by training, and is not psychologically disposed to look for undesirable side effects of his control program. Yet it is the control men in state and federal governments -- and of course the chemical manufacturers -- who steadfastly deny the facts reported by the biologists and declare they see little evidence of harm to wildlife. Like the priest and the Levite in the biblical story, they choose to pass by on the other side and to see nothing. Even if we charitably explain their denials as due to the shortsightedness of the specialist and the man with an interest this does not mean we must accept them as qualified witnesses.

The best way to form our own judgment is to look at some of the major control programs and learn, from observers familiar with the ways of wildlife, and unbiased in favor of chemicals, just what has happened in the wake of a rain of poison falling from the skies into the world of wildlife.

To the bird watcher, the suburbanite who derives joy from birds in his garden, the hunter, the fisherman or the explorer of wild regions, anything that destroys the wildlife of an area for even a single year has deprived him of pleasure to which he has a legitimate right. This is a valid point of view. Even if, as has sometimes happened, some of the birds and mammals and fishes are able to re-establish themselves after a single spraying, a great and real harm has been done.

But such re-establishment is unlikely to happen. Spraying tends to be repetitive, and a single exposure from which the wildlife populations might have a chance to recover is a rarity. What usually results is a poisoned environment, a lethal trap in which not only the resident populations succumb but those who come in as migrants as well. The larger the area sprayed the more serious the harm, because no oases of safety remain. Now, in a decade marked by insect-control programs in which many thousands or even millions of acres are sprayed as a unit, a decade in which private and community spraying has also surged steadily upward, a record of destruction and death of American wildlife has accumulated. Let us look at some of these programs and see what has happened.

During the fall of 1959 some 27,000 acres in southeastern Michigan, including numerous suburbs of Detroit, were heavily dusted from the air with pellets of aldrin, one of the most dangerous of all the chlorinated hydrocarbons. The program was conducted by the Michigan Department of Agriculture with the cooperation of the United States Department of Agriculture; its announced purpose was control of the Japanese beetle.

Little need was shown for this drastic and dangerous action. On the contrary, Walter P. Nickell, one of the best-known and best-informed naturalists in the state, who spends much of his time in the field with long periods in southern Michigan every summer, declared: "For more than thirty years, to my direct knowledge, the Japanese beetle has been present in the city of Detroit in small numbers. The numbers have not shown any appreciable increase in all this lapse of years. I have yet to see a single Japanese beetle [in 1959] other than the few caught in Government catch traps in Detroit ... Everything is being kept so secret that I have not yet been able to obtain any information whatsoever to the effect that they have increased in numbers."

An official release by the state agency merely declared that the beetle had "put in its appearance" in the areas designated for the aerial attack upon it. Despite the lack of justification the program was launched, with the state providing the manpower and supervising the operation, the federal government providing equipment and additional men, and the communities paying for the insecticide.

The Japanese beetle, an insect accidentally imported into the United States, was discovered in New Jersey in 1916, when a few shiny beetles of a metallic green color were seen in a nursery near Riverton. The beetles, at first unrecognized, were finally identified as a common inhabitant of the main islands of Japan. Apparently they had entered the United States on nursery stock imported before restrictions were established in 1912.

From its original point of entrance the Japanese beetle has spread rather widely throughout many of the states east of the Mississippi, where conditions of temperature and rainfall are suitable for it. Each year some outward movement beyond the existing boundaries of its distribution usually rakes place. In the eastern areas where the beetles have been longest established, attempts have been made to set up natural controls. Where this has been done, the beetle populations have been kept at relatively low levels, as many records attest.

Despite the record of reasonable control in eastern areas, the midwestern states now on the fringe of the beetle's range have launched an attack worthy of the most deadly enemy instead of only a moderately destructive insect, employing the most dangerous chemicals distributed in a manner that exposes large numbers of people, their domestic animals, and all wildlife to the poison intended for the beetle. As a result these Japanese beetle programs have caused shocking destruction of animal life and have exposed human beings to undeniable hazard. Sections of Michigan, Kentucky, Iowa, Indiana, Illinois, and Missouri are all experiencing a rain of chemicals in the name of beetle control.

The Michigan spraying was one of the first large-scale attacks on the Japanese beetle from the air. The choice of aldrin, one of the deadliest of all chemicals, was not determined by any peculiar suitability for Japanese beetle control, but simply by the wish to save money -- aldrin was the cheapest of the compounds available. While the state in its official release to the press acknowledged that aldrin is a "poison," it implied that no harm could come to human beings in the heavily populated areas to which the chemical was applied. (The official answer to the query "What precautions should I take?" was "For you, none.") An official of the Federal Aviation Agency was later quoted in the local press to the effect that "this is a safe operation" and a representative of the Detroit Department of Parks and Recreation added his assurance that "the dust is harmless to humans and will not hurt plants or pets." One must assume that none of these officials had consulted the published and readily available reports of the United States Public Health Service, the Fish and Wildlife Service, and other evidence of the extremely poisonous nature of aldrin.

Acting under the Michigan pest control law which allows the state to spray indiscriminately without notifying or gaining permission of individual landowners, the low-lying planes began to fly over the Detroit area. The city authorities and the Federal Aviation Agency were immediately besieged by calls from worried citizens. After receiving nearly 800 calls in a single hour, the police begged radio and television stations and newspapers to "tell the watchers what they were seeing and advise them it was safe," according to the Detroit News. The Federal Aviation Agency's safety officer assured the public that "the planes are carefully supervised" and "are authorized to fly low." In a somewhat mistaken attempt to allay fears, he added that the planes had emergency valves that would allow them to dump their entire load instantaneously. This, fortunately, was not done, but as the planes went about their work the pellets of insecticide fell on beetles and humans alike, showers of "harmless" poison descending on people shopping or going to work and on children out from school for the lunch hour. Housewives swept the granules from porches and sidewalks, where they are said to have "looked like snow." As pointed out later by the Michigan Audubon Society, "In the spaces between shingles on roofs, in eaves-troughs, in the cracks in bark and twigs, the little white pellets of aldrin-and-clay, no bigger than a pin head, were lodged by the millions ... When the snow and rain came, every puddle became a possible death potion."

Within a few days after the dusting operation, the Detroit Audubon Society began receiving calls about the birds. According to the Society's secretary, Mrs. Ann Boyes, "The first indication that the people were concerned about the spray was a call I received on Sunday morning from a woman who reported that coming home from church she saw an alarming number of dead and dying birds. The spraying there had been done on Thursday. She said there were no birds at all flying in the area, that she had found at least a dozen [dead] in her backyard and that the neighbors had found dead squirrels." All other calls received by Mrs. Boyes that day reported "a great many dead birds and no live ones ... People who had maintained bird feeders said there were no birds at all at their feeders." Birds picked up in a dying condition showed the typical symptoms of insecticide poisoning -- tremoring, loss of ability to fly, paralysis, convulsions.

Nor were birds the only forms of life immediately affected. A local veterinarian reported that his office was full of clients with dogs and cats that had suddenly sickened. Cats, who so meticulously groom their coats and lick their paws, seemed to be most affected. Their illness took the form of severe diarrhea, vomiting, and convulsions. The only advice the veterinarian could give his clients was not to let the animals out unnecessarily, or to wash the paws promptly if they did so. (But the chlorinated hydrocarbons cannot be washed even from fruits or vegetables, so little protection could be expected from this measure.)

Despite the insistence of the City-County Health Commissioner that the birds must have been killed by "some other kind of spraying" and that the outbreak of throat and chest irritations that followed the exposure to aldrin must have been due to "something else," the local Health Department received a constant stream of complaints. A prominent Detroit internist was called upon to treat four of his patients within an hour after they had been exposed while watching the planes at work. All had similar symptoms: nausea, vomiting, chills, fever, extreme fatigue, and coughing.

The Detroit experience has been repeated in many other communities as pressure has mounted to combat the Japanese beetle with chemicals. At Blue Island, Illinois, hundreds of dead and dying birds were picked up. Data collected by birdbanders here suggest that 80 per cent of the songbirds were sacrificed. In Joliet, Illinois, some 3000 acres were treated with heptachlor in 1959. According to reports from a local sportsmen's club, the bird population within the treated area was "virtually wiped out." Dead rabbits, muskrats, opossums, and fish were also found in numbers, and one of the local schools made the collection of insecticide-poisoned birds a science project.


Perhaps no community has suffered more for the sake of a beetleless world than Sheldon, in eastern Illinois, and adjacent areas in Iroquois County. In 1954 the United States Department of Agriculture and the Illinois Agriculture Department began a program to eradicate the Japanese beetle along the line of its advance into Illinois, holding out the hope, and indeed the assurance, that intensive spraying would destroy the populations of the invading insect. The first "eradication" took place that year, when dieldrin was applied to 1400 acres by air. Another 2600 acres were treated similarly in 1955, and the task was presumably considered complete. But more and more chemical treatments were called for, and by the end of 1961, some 131,000 acres had been covered. Even in the first years of the program it was apparent that heavy losses were occurring among wildlife and domestic animals. The chemical treatments were continued, nevertheless, without consultation with either the United States Fish and Wildlife Service or the Illinois Game Management Division. (In the spring of 1960, however, officials of the federal Department of Agriculture appeared before a congressional committee in opposition to a bill that would require just such prior consultation. They declared blandly that the bill was unnecessary because cooperation and consultation were "usual." These officials were quite unable to recall situations where cooperation had not taken place "at the Washington level." In the same hearings they stated clearly their unwillingness to consult with state fish and game departments.)

Although funds for chemical control came in never-ending streams, the biologists of the Illinois Natural History Survey who attempted to measure the damage to wildlife had to operate on a financial shoestring. A mere $1100 was available for the employment of a field assistant in 1954 and no special funds were provided in 1955. Despite these crippling difficulties, the biologists assembled facts that collectively paint a picture of almost unparalleled wildlife destruction -- destruction that became obvious as soon as the program got under way.

Conditions were made to order for poisoning insect-eating birds, both in the poisons used and in the events set in motion by their application. In the early programs at Sheldon, dieldrin was applied at the rate of 3 pounds to the acre. To understand its effect on birds one need only remember that in laboratory experiments on quail dieldrin has proved to be about 50 times as poisonous as DDT. The poison spread over the landscape at Sheldon was therefore roughly equivalent to 150 pounds of DDT per acre! And this was a minimum, because there seems to have been some overlapping of treatments along field borders and in corners.

As the chemical penetrated the soil the poisoned beetle grubs crawled out on the surface of the ground, where they remained for some time before they died, attractive to insect-eating birds. Dead and dying insects of various species were conspicuous for about two weeks after the treatment. The effect on the bird populations could easily have been foretold. Brown thrashers, starlings, meadowlarks, grackles, and pheasants were virtually wiped out. Robins were "almost annihilated," according to the biologists' report. Dead earthworms had been seen in numbers after a gentle rain; probably the robins had fed on the poisoned worms. For other birds, too, the once beneficial rain had been changed, through the evil power of the poison introduced into their world, into an agent of destruction. Birds seen drinking and bathing in puddles left by rain a few days after the spraying were inevitably doomed.

The birds that survived may have been rendered sterile. Although a few nests were found in the treated area, a few with eggs, none contained young birds.

Among the mammals ground squirrels were virtually annihilated; their bodies were found in attitudes characteristic of violent death by poisoning. Dead muskrats were found in the treated areas, dead rabbits in the fields. The fox squirrel had been a relatively common animal in the town; after the spraying it was gone.

It was a rare farm in the Sheldon area that was blessed by the presence of a cat after the war on beetles was begun. Ninety per cent of all the farm cats fell victims to the dieldrin during the first season of spraying. This might have been predicted because of the black record of these poisons in other places. Cats are extremely sensitive to all insecticides and especially so, it seems, to dieldrin. In western Java in the course of the antimalarial program carried out by the World Health Organization, many cats are reported to have died. In central Java so many were killed that the price of a cat more than doubled. Similarly, the World Health Organization, spraying in Venezuela, is reported to have reduced cats to the status of a rare animal.

In Sheldon it was not only the wild creatures and the domestic companions that were sacrificed in the campaign against an insect. Observations on several flocks of sheep and a herd of beef cattle are indicative of the poisoning and death that threatened livestock as well. The Natural History Survey report describes one of these episodes as follows:

The sheep ... were driven into a small, untreated bluegrass pasture across a gravel road from a field which had been treated with dieldrin spray on May 6. Evidently some spray had drifted across the road into the pasture, for the sheep began to show symptoms of intoxication almost at once ... They lost interest in food and displayed extreme restlessness, following the pasture fence around and around apparently searching for a way out ... [They] refused to be driven, bleated almost continuously, and stood with their heads lowered; they were finally carried from the pasture ... They displayed great desire for water. Two of the sheep were found dead in the stream passing through the pasture, and the remaining sheep were repeatedly driven out of the stream, several having to be dragged forcibly from the water. Three of the sheep eventually died; those remaining recovered to all outward appearances.

This, then, was the picture at the end of 1955. Although the chemical war went on in succeeding years, the trickle of research funds dried up completely. Requests for money for wildlife-insecticide research were included in annual budgets submitted to the Illinois legislature by the Natural History Survey, but were invariably among the first items to be eliminated. It was not until 1960 that money was somehow found to pay the expenses of one field assistant -- to do work that could easily have occupied the time of four men.

The desolate picture of wildlife loss had changed little when the biologists resumed the studies broken off in 1955. In the meantime, the chemical had been changed to the even more toxic aldrin, 100 to 300 times as toxic as DDT in tests on quail. By 1960, every species of wild mammal known to inhabit the area had suffered losses. It was even worse with the birds. In the small town of Donovan the robins had been wiped out, as had the grackles, starlings, and brown thrashers. These and many other birds were sharply reduced elsewhere. Pheasant hunters felt the effects of the beetle campaign sharply. The number of broods produced on treated lands fell off by some 50 percent, and the number of young in a brood declined. Pheasant hunting, which had been good in these areas in former years, was virtually abandoned as unrewarding.

In spite of the enormous havoc that had been wrought in the name of eradicating the Japanese beetle, the treatment of more than 100,000 acres in Iroquois County over an eight-year period seems to have resulted in only temporary suppression of the insect, which continues its westward movement. The full extent of the toll that has been taken by this largely ineffective program may never be known, for the results measured by the Illinois biologists are a minimum figure. If the research program had been adequately financed to permit full coverage, the destruction revealed would have been even more appalling. But in the eight years of the program, only about $6000 was provided for biological field studies. Meanwhile the federal government had spent about $375,000 for control work and additional thousands had been provided by the state. The amount spent for research was therefore a small fraction of I per cent of the outlay for the chemical program.

These midwestern programs have been conducted in a spirit of crisis, as though the advance of the beetle presented an extreme peril justifying any means to combat it. This of course is a distortion of the facts, and if the communities that have endured these chemical drenchings had been familiar with the earlier history of the Japanese beetle in the United States they would surely have been less acquiescent.

The eastern states, which had the good fortune to sustain their beetle invasion in the days before the synthetic insecticides had been invented, have not only survived the invasion but have brought the insect under control by means that represented no threat whatever to other forms of life. There has been nothing comparable to the Detroit or Sheldon sprayings in the East. The effective methods there involved the bringing into play of natural forces of control which have the multiple advantages of permanence and environmental safety.

During the first dozen years after its entry into the United States, the beetle increased rapidly, free of the restraints that in its native land hold it in check. But by 1945 it had become a pest of only minor importance throughout much of the territory over which it had spread. Its decline was largely a consequence of the importation of parasitic insects from the Far East and of the establishment of disease organisms fatal to it.

Between 1920 and 1933, as a result of diligent searching throughout the native range of the beetle, some 34 species of predatory or parasitic insects had been imported from the Orient in an effort to establish natural control. Of these, five became well established in the eastern United States. The most effective and widely distributed is a parasitic wasp from Korea and China, Tiphia vernalis. The female Tiphia, finding a beetle grub in the soil, injects a paralyzing fluid and attaches a single egg to the undersurface of the grub. The young wasp, hatching as a larva, feeds on the paralyzed grub and destroys it. In some 25 years, colonies of Tiphia were introduced into 14 eastern states in a cooperative program of state and federal agencies. The wasp became widely established in this area and is generally credited by entomologists with an important role in bringing the beetle under control.

An even more important role has been played by a bacterial disease that affects beetles of the family to which the Japanese beetle belongs -- the scarabaeids. It is a highly specific organism, attacking no other type of insects, harmless to earthworms, warm-blooded animals, and plants. The spores of the disease occur in soil. When ingested by a foraging beetle grub they multiply prodigiously in its blood, causing it to turn an abnormally white color, hence the popular name, "milky disease."

Milky disease was discovered in New Jersey in 1933. By 1938 it was rather widely prevalent in the older areas of Japanese beetle infestation. In 1939 a control program was launched, directed at speeding up the spread of the disease. No method had been developed for growing the disease organism in an artificial medium, but a satisfactory substitute was evolved; infected grubs are ground up, dried, and combined with chalk. In the standard mixture a gram of dust contains 100 million spores. Between 1939 and 1953 some 94,000 acres in 14 eastern states were treated in a cooperative federal-state program; other areas on federal lands were treated; and an unknown but extensive area was treated by private organizations or individuals. By 1945, milky spore disease was raging among the beetle populations of Connecticut, New York, New Jersey, Delaware, and Maryland. In some test areas infection of grubs had reached as high as 94 percent. The distribution program was discontinued as a governmental enterprise in 1953 and production was taken over by a private laboratory, which continues to supply individuals, garden clubs, citizens' associations, and all others interested in beetle control.

The eastern areas where this program was carried out now enjoy a high degree of natural protection from the beetle. The organism remains viable in the soil for years and therefore becomes to all intents and purposes permanently established, increasing in effectiveness, and being continuously spread by natural agencies.

Why, then, with this impressive record in the East, were the same procedures not tried in Illinois and the other midwestern states where the chemical battle of the beetles is now being waged with such fury?

We are told that inoculation with milky spore disease is "too expensive" -- although no one found it so in the 14 eastern states in the 1940's. And by what sort of accounting was the "too expensive" judgment reached? Certainly not by any that assessed the true costs of the total destruction wrought by such programs as the Sheldon spraying. This judgment also ignores the fact that inoculation with the spores need be done only once; the first cost is the only cost.

We are told also that milky spore disease cannot be used on the periphery of the beetle's range because it can be established only where a large grub population is already present in the soil. Like many other statements in support of spraying, this one needs to be questioned. The bacterium that causes milky spore disease has been found to infect at least 40 other species of beetles which collectively have quite a wide distribution and would in all probability serve to establish the disease even where the Japanese beetle population is very small or nonexistent. Furthermore, because of the long viability of the spores in soil they can be introduced even in the complete absence of grubs, as on the fringe of the present beetle infestation, there to await the advancing population.

Those who want immediate results, at whatever cost, will doubtless continue to use chemicals against the beetle. So will those who favor the modern trend to built-in obsolescence, for chemical control is self-perpetuating, needing frequent and costly repetition.

On the other hand, those who are willing to wait an extra season or two for full results will turn to milky disease; they will be rewarded with lasting control that becomes more, rather than less effective with the passage of time.

An extensive program of research is under way in the United States Department of Agriculture laboratory at Peoria, Illinois, to find a way to culture the organism of milky disease on an artificial medium. This will greatly reduce its cost and should encourage its more extensive use. After years of work, some success has now been reported. When this "breakthrough" is thoroughly established perhaps some sanity and perspective will be restored to our dealings with the Japanese beetle, which at the peak of its depredations never justified the nightmare excesses of some of these midwestern programs.


Incidents like the eastern Illinois spraying raise a question that is not only scientific but moral. The question is whether any civilization can wage relentless war on life without destroying itself, and without losing the right to be called civilized.

These insecticides are not selective poisons; they do not single out the one species of which we desire to be rid. Each of them is used for the simple reason that it is a deadly poison. It therefore poisons all life with which it comes in contact: the cat beloved of some family, the farmer's cattle, the rabbit in the field, and the horned lark out of the sky. These creatures are innocent of any harm to man. Indeed, by their very existence they and their fellows make his life more pleasant. Yet he rewards them with a death that is not only sudden but horrible. Scientific observers at Sheldon described the symptoms of a meadowlark found near death: "Although it lacked muscular coordination and could not fly or stand, it continued to beat its wings and clutch with its toes while lying on its side. Its beak was held open and breathing was labored." Even more pitiful was the mute testimony of the dead ground squirrels, which "exhibited a characteristic attitude in death. The back was bowed, and the forelegs with the toes of the feet tightly clenched were drawn close to the thorax ... The head and neck were outstretched and the mouth often contained dirt, suggesting that the dying animal had been biting at the ground."

By acquiescing in an act that can cause such suffering to a living creature, who among us is not diminished as a human being?
Site Admin
Posts: 35790
Joined: Thu Aug 01, 2013 5:21 am


Return to Planet on Fire

Who is online

Users browsing this forum: No registered users and 2 guests